Question
Simplify the expression
409p14q4−253p7q8
Evaluate
(43p7−52q4)(43p7×52q4)
Remove the parentheses
(43p7−52q4)×43p7×52q4
Multiply the terms
More Steps

Evaluate
43×52
Reduce the numbers
23×51
To multiply the fractions,multiply the numerators and denominators separately
2×53
Multiply the numbers
103
(43p7−52q4)×103p7q4
Multiply the terms
103p7q4(43p7−52q4)
Apply the distributive property
103p7q4×43p7−103p7q4×52q4
Multiply the terms
More Steps

Evaluate
103p7q4×43p7
Multiply the numbers
More Steps

Evaluate
103×43
To multiply the fractions,multiply the numerators and denominators separately
10×43×3
Multiply the numbers
10×49
Multiply the numbers
409
409p7q4p7
Multiply the terms
More Steps

Evaluate
p7×p7
Use the product rule an×am=an+m to simplify the expression
p7+7
Add the numbers
p14
409p14q4
409p14q4−103p7q4×52q4
Solution
More Steps

Evaluate
103p7q4×52q4
Multiply the numbers
More Steps

Evaluate
103×52
Reduce the numbers
53×51
To multiply the fractions,multiply the numerators and denominators separately
5×53
Multiply the numbers
253
253p7q4×q4
Multiply the terms
More Steps

Evaluate
q4×q4
Use the product rule an×am=an+m to simplify the expression
q4+4
Add the numbers
q8
253p7q8
409p14q4−253p7q8
Show Solution

Factor the expression
2003p7q4(15p7−8q4)
Evaluate
(43p7−52q4)(43p7×52q4)
Remove the parentheses
(43p7−52q4)×43p7×52q4
Multiply the terms
More Steps

Multiply the terms
43p7×52q4
Multiply the terms
More Steps

Evaluate
43×52
Reduce the numbers
23×51
To multiply the fractions,multiply the numerators and denominators separately
2×53
Multiply the numbers
103
103p7q4
(43p7−52q4)×103p7q4
Multiply the terms
103p7q4(43p7−52q4)
Factor the expression
103p7q4×201(15p7−8q4)
Solution
2003p7q4(15p7−8q4)
Show Solution
