Question
Solve the equation
x=2310
Alternative Form
x≈0.434783
Evaluate
(4096625)5x−1=(125512)x−2
Take the logarithm of both sides
log4096625((4096625)5x−1)=log4096625((125512)x−2)
Evaluate the logarithm
44(5x−1)=−43(x−2)
Rewrite the expression
44(5x−1)=4−3(x−2)
Cross multiply
4(5x−1)×4=4(−3(x−2))
Simplify the equation
16(5x−1)=4(−3(x−2))
Simplify the equation
16(5x−1)=−12(x−2)
Rewrite the expression
4×4(5x−1)=4(−3(x−2))
Evaluate
4(5x−1)=−3(x−2)
Calculate
More Steps

Evaluate
4(5x−1)
Apply the distributive property
4×5x−4×1
Multiply the numbers
20x−4×1
Any expression multiplied by 1 remains the same
20x−4
20x−4=−3(x−2)
Calculate
More Steps

Evaluate
−3(x−2)
Apply the distributive property
−3x−(−3×2)
Multiply the numbers
−3x−(−6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3x+6
20x−4=−3x+6
Move the expression to the left side
20x−4−(−3x+6)=0
Calculate
More Steps

Add the terms
20x−4−(−3x+6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
20x−4+3x−6
Add the terms
More Steps

Evaluate
20x+3x
Collect like terms by calculating the sum or difference of their coefficients
(20+3)x
Add the numbers
23x
23x−4−6
Subtract the numbers
23x−10
23x−10=0
Move the constant to the right-hand side and change its sign
23x=0+10
Removing 0 doesn't change the value,so remove it from the expression
23x=10
Divide both sides
2323x=2310
Solution
x=2310
Alternative Form
x≈0.434783
Show Solution
