Question
Simplify the expression
0
Evaluate
(x+y+z)(x−3)+(−y−z−x)(x−3)
Expand the expression
More Steps

Calculate
(x+y+z)(x−3)
Apply the distributive property
x×x−x×3+yx−y×3+zx−z×3
Multiply the terms
x2−x×3+yx−y×3+zx−z×3
Use the commutative property to reorder the terms
x2−3x+yx−y×3+zx−z×3
Use the commutative property to reorder the terms
x2−3x+yx−3y+zx−z×3
Use the commutative property to reorder the terms
x2−3x+yx−3y+zx−3z
x2−3x+yx−3y+zx−3z+(−y−z−x)(x−3)
Expand the expression
More Steps

Calculate
(−y−z−x)(x−3)
Apply the distributive property
−yx−(−y×3)−zx−(−z×3)−x×x−(−x×3)
Use the commutative property to reorder the terms
−yx−(−3y)−zx−(−z×3)−x×x−(−x×3)
Use the commutative property to reorder the terms
−yx−(−3y)−zx−(−3z)−x×x−(−x×3)
Multiply the terms
−yx−(−3y)−zx−(−3z)−x2−(−x×3)
Use the commutative property to reorder the terms
−yx−(−3y)−zx−(−3z)−x2−(−3x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−yx+3y−zx+3z−x2+3x
x2−3x+yx−3y+zx−3z−yx+3y−zx+3z−x2+3x
The sum of two opposites equals 0
More Steps

Evaluate
x2−x2
Collect like terms
(1−1)x2
Add the coefficients
0×x2
Calculate
0
0−3x+yx−3y+zx−3z−yx+3y−zx+3z+3x
Remove 0
−3x+yx−3y+zx−3z−yx+3y−zx+3z+3x
The sum of two opposites equals 0
More Steps

Evaluate
−3x+3x
Collect like terms
(−3+3)x
Add the coefficients
0×x
Calculate
0
0+yx−3y+zx−3z−yx+3y−zx+3z
Remove 0
yx−3y+zx−3z−yx+3y−zx+3z
The sum of two opposites equals 0
More Steps

Evaluate
yx−yx
Collect like terms
(1−1)yx
Add the coefficients
0×yx
Calculate
0
0−3y+zx−3z+3y−zx+3z
Remove 0
−3y+zx−3z+3y−zx+3z
The sum of two opposites equals 0
More Steps

Evaluate
−3y+3y
Collect like terms
(−3+3)y
Add the coefficients
0×y
Calculate
0
0+zx−3z−zx+3z
Remove 0
zx−3z−zx+3z
The sum of two opposites equals 0
More Steps

Evaluate
zx−zx
Collect like terms
(1−1)zx
Add the coefficients
0×zx
Calculate
0
0−3z+3z
Remove 0
−3z+3z
Solution
0
Show Solution
