Question
Solve the equation
Solve for x
Solve for m
x=24050+220252−8+8mx=−24050+220252−8+8mx=24050−220252−8+8mx=−24050−220252−8+8m
Evaluate
(x×12×x×1−2025)x2=2m−2
Simplify
More Steps

Evaluate
(x×12×x×1−2025)x2
1 raised to any power equals to 1
(x×1×x×1−2025)x2
Multiply the terms
More Steps

Multiply the terms
x×1×x×1
Rewrite the expression
x×x
Multiply the terms
x2
(x2−2025)x2
Multiply the terms
x2(x2−2025)
x2(x2−2025)=2m−2
Expand the expression
More Steps

Evaluate
x2(x2−2025)
Apply the distributive property
x2×x2−x2×2025
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
x4−x2×2025
Use the commutative property to reorder the terms
x4−2025x2
x4−2025x2=2m−2
Move the expression to the left side
x4−2025x2−(2m−2)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x4−2025x2−2m+2=0
Solve the equation using substitution t=x2
t2−2025t−2m+2=0
Substitute a=1,b=−2025 and c=−2m+2 into the quadratic formula t=2a−b±b2−4ac
t=22025±(−2025)2−4(−2m+2)
Simplify the expression
More Steps

Evaluate
(−2025)2−4(−2m+2)
Multiply the terms
More Steps

Evaluate
4(−2m+2)
Apply the distributive property
−4×2m+4×2
Multiply the terms
−8m+4×2
Multiply the numbers
−8m+8
(−2025)2−(−8m+8)
Rewrite the expression
20252−(−8m+8)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
20252+8m−8
t=22025±20252+8m−8
Separate the equation into 2 possible cases
t=22025+20252+8m−8t=22025−20252+8m−8
Substitute back
x2=22025+20252+8m−8x2=22025−20252+8m−8
Solve the equation for x
More Steps

Substitute back
x2=22025+20252+8m−8
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±22025+20252+8m−8
Simplify the expression
More Steps

Evaluate
22025+20252+8m−8
To take a root of a fraction,take the root of the numerator and denominator separately
22025+20252+8m−8
Evaluate the power
22025+20252−8+8m
Multiply by the Conjugate
2×22025+20252−8+8m×2
Calculate
22025+20252−8+8m×2
Calculate
24050+220252−8+8m
x=±24050+220252−8+8m
Separate the equation into 2 possible cases
x=24050+220252−8+8mx=−24050+220252−8+8m
x=24050+220252−8+8mx=−24050+220252−8+8mx2=22025−20252+8m−8
Solution
More Steps

Substitute back
x2=22025−20252+8m−8
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±22025−20252+8m−8
Simplify the expression
More Steps

Evaluate
22025−20252+8m−8
To take a root of a fraction,take the root of the numerator and denominator separately
22025−20252+8m−8
Evaluate the power
22025−20252−8+8m
Multiply by the Conjugate
2×22025−20252−8+8m×2
Calculate
22025−20252−8+8m×2
Calculate
24050−220252−8+8m
x=±24050−220252−8+8m
Separate the equation into 2 possible cases
x=24050−220252−8+8mx=−24050−220252−8+8m
x=24050+220252−8+8mx=−24050+220252−8+8mx=24050−220252−8+8mx=−24050−220252−8+8m
Show Solution
