Question
Simplify the expression
e2110592π4l2n2−110592π4l2nogπ
Evaluate
(π2ln×482)÷(((e2÷π2÷lnπ)÷(ln×48−logπ×48))lnπ)
Dividing by an is the same as multiplying by a−n
((e2÷π2÷lnπ)÷(ln×48−logπ×48))lnπ2ln×482π−1
Divide the terms
More Steps

Evaluate
e2÷π2
Simplify
e÷π2
Simplify
(πe)2
Evaluate the power
π2e2
((π2e2÷lnπ)÷(ln×48−logπ×48))lnπ2ln×482π−1
Use the commutative property to reorder the terms
((π2e2÷πln)÷(ln×48−logπ×48))lnπ2ln×482π−1
Divide the terms
More Steps

Evaluate
π2e2÷πln
Multiply by the reciprocal
π2e2×πln1
Multiply the terms
π2×πlne2
Calculate the product
π3lne2
(π3lne2÷(ln×48−logπ×48))lnπ2ln×482π−1
Use the commutative property to reorder the terms
(π3lne2÷(48ln−logπ×48))lnπ2ln×482π−1
Use the commutative property to reorder the terms
(π3lne2÷(48ln−48logπ))lnπ2ln×482π−1
Divide the terms
More Steps

Evaluate
π3lne2÷(48ln−48logπ)
Multiply by the reciprocal
π3lne2×48ln−48logπ1
Multiply the terms
π3ln(48ln−48logπ)e2
π3ln(48ln−48logπ)e2×lnπ2ln×482π−1
Reduce the fraction
π3ln(48ln−48logπ)e2×nπ2n×482π−1
Reduce the fraction
π3ln(48ln−48logπ)e2π2×482π−1
Multiply
More Steps

Multiply the terms
π2×482π−1
Multiply the terms with the same base by adding their exponents
π2−1×482
Subtract the numbers
π×482
Evaluate the power
π×2304
Multiply the numbers
2304π
π3ln(48ln−48logπ)e22304π
Multiply by the reciprocal
2304π×e2π3ln(48ln−48logπ)
Multiply the terms
e22304π×π3ln(48ln−48logπ)
Multiply the terms
More Steps

Evaluate
π×π3
Multiply the terms with the same base by adding their exponents
π1+3
Add the numbers
π4
e22304π4ln(48ln−48logπ)
Solution
More Steps

Evaluate
2304π4ln(48ln−48logπ)
Apply the distributive property
2304π4ln×48ln−2304π4ln×48logπ
Multiply the terms
More Steps

Evaluate
2304π4ln×48ln
Multiply the numbers
110592π4lnln
Multiply the terms
110592π4l2n×n
Multiply the terms
110592π4l2n2
110592π4l2n2−2304π4ln×48logπ
Multiply the terms
More Steps

Evaluate
2304π4ln×48logπ
Multiply the numbers
110592π4lnlogπ
Multiply the terms
110592π4l2nogπ
110592π4l2n2−110592π4l2nogπ
e2110592π4l2n2−110592π4l2nogπ
Show Solution

Find the excluded values
l=0,n=0,gπ=on
Evaluate
(π2ln(482))÷(((e2÷π2÷lnπ)÷(ln×48−logπ×48))lnπ)
To find the excluded values,set the denominators equal to 0
ln=0ln×48−logπ×48=0((e2÷π2÷lnπ)÷(ln×48−logπ×48))lnπ=0
Separate the equation into 2 possible cases
l=0n=0ln×48−logπ×48=0((e2÷π2÷lnπ)÷(ln×48−logπ×48))lnπ=0
Solve the equations
More Steps

Evaluate
ln×48−logπ×48=0
Simplify
More Steps

Evaluate
ln×48−logπ×48
Use the commutative property to reorder the terms
48ln−logπ×48
Use the commutative property to reorder the terms
48ln−48logπ
48ln−48logπ=0
Factor the expression
48l(n−ogπ)=0
Divide both sides
l(n−ogπ)=0
Separate the equation into 2 possible cases
l=0n−ogπ=0
Calculate
n−ogπ=0l=0
Solve the equations
More Steps

Evaluate
n−ogπ=0
Move the expression to the right side
−ogπ=0−n
Simplify
−ogπ=−n
Divide both sides
gπ=on
gπ=onl=0
l=0n=0gπ=onl=0((e2÷π2÷lnπ)÷(ln×48−logπ×48))lnπ=0
Solve the equations
More Steps

Evaluate
((e2÷π2÷lnπ)÷(ln×48−logπ×48))lnπ=0
Simplify
More Steps

Evaluate
((e2÷π2÷lnπ)÷(ln×48−logπ×48))lnπ
Divide the terms
((π2e2÷lnπ)÷(ln×48−logπ×48))lnπ
Use the commutative property to reorder the terms
((π2e2÷πln)÷(ln×48−logπ×48))lnπ
Divide the terms
(π3lne2÷(ln×48−logπ×48))lnπ
Use the commutative property to reorder the terms
(π3lne2÷(48ln−logπ×48))lnπ
Use the commutative property to reorder the terms
(π3lne2÷(48ln−48logπ))lnπ
Divide the terms
π3ln(48ln−48logπ)e2×lnπ
Multiply the terms
π3n(48ln−48logπ)e2×nπ
Multiply the terms
π3(48ln−48logπ)e2×π
Cancel out the common factor π
π2(48ln−48logπ)e2×1
Multiply the terms
π2(48ln−48logπ)e2
π2(48ln−48logπ)e2=0
Cross multiply
e2=π2(48ln−48logπ)×0
Simplify the equation
e2=0
Calculate
7.389056=0
Check the equality
false
l=0n=0gπ=onl=0false
Solution
l=0,n=0,gπ=on
Show Solution
