Question
Solve the equation
Solve for x
Solve for gπ
Solve for n
Load more

x=746656πnl−46656πogπl
Evaluate
(π2ln×722)÷((x÷(ln×72−logπ×72))lnπ)=56
Simplify
More Steps

Evaluate
(π2ln×722)÷((x÷(ln×72−logπ×72))lnπ)
Dividing by an is the same as multiplying by a−n
(x÷(ln×72−logπ×72))lnπ2ln×722π−1
Use the commutative property to reorder the terms
(x÷(72ln−logπ×72))lnπ2ln×722π−1
Use the commutative property to reorder the terms
(x÷(72ln−72logπ))lnπ2ln×722π−1
Rewrite the expression
72ln−72logπx×lnπ2ln×722π−1
Reduce the fraction
72ln−72logπx×nπ2n×722π−1
Reduce the fraction
72ln−72logπxπ2×722π−1
Multiply
More Steps

Multiply the terms
π2×722π−1
Multiply the terms with the same base by adding their exponents
π2−1×722
Subtract the numbers
π×722
Evaluate the power
π×5184
Multiply the numbers
5184π
72ln−72logπx5184π
Multiply by the reciprocal
5184π×x72ln−72logπ
Multiply the terms
x5184π(72ln−72logπ)
x5184π(72ln−72logπ)=56
Rewrite the expression
x373248πln−373248πlogπ=56
Cross multiply
373248πln−373248πlogπ=x×56
Simplify the equation
373248πln−373248πlogπ=56x
Rewrite the expression
8(46656πnl−46656πogπl)=8×7x
Evaluate
46656πnl−46656πogπl=7x
Swap the sides of the equation
7x=46656πnl−46656πogπl
Divide both sides
77x=746656πnl−46656πogπl
Solution
x=746656πnl−46656πogπl
Show Solution
