Question
Simplify the expression
x1000πloge−1000πlogπ
Evaluate
(π2loge×102)÷((x÷(loge×10−logπ×10))logeπ)
Dividing by an is the same as multiplying by a−n
(x÷(loge×10−logπ×10))logeπ2loge×102π−1
Use the commutative property to reorder the terms
(x÷(10loge−logπ×10))logeπ2loge×102π−1
Use the commutative property to reorder the terms
(x÷(10loge−10logπ))logeπ2loge×102π−1
Rewrite the expression
10loge−10logπx×logeπ2loge×102π−1
Reduce the fraction
10loge−10logπx×ogeπ2oge×102π−1
Reduce the fraction
10loge−10logπx×geπ2ge×102π−1
Reduce the fraction
10loge−10logπxπ2×102π−1
Multiply
More Steps

Multiply the terms
π2×102π−1
Multiply the terms with the same base by adding their exponents
π2−1×102
Subtract the numbers
π×102
Evaluate the power
π×100
Multiply the numbers
100π
10loge−10logπx100π
Multiply by the reciprocal
100π×x10loge−10logπ
Multiply the terms
x100π(10loge−10logπ)
Solution
More Steps

Evaluate
100π(10loge−10logπ)
Apply the distributive property
100π×10loge−100π×10logπ
Multiply the numbers
1000πloge−100π×10logπ
Multiply the numbers
1000πloge−1000πlogπ
x1000πloge−1000πlogπ
Show Solution
