Question
Simplify the expression
6553611390625×76c4o4s4p24
Evaluate
(((((((cos(pi)6)÷16)(cos(3pi)6))÷16)(cos(5pi)6))÷16)(cos(7pi)6))÷16
Remove the parentheses
(((((((cos(pi)6)÷16)cos(3pi)6)÷16)cos(5pi)6)÷16)cos(7pi)6)÷16
Use the commutative property to reorder the terms
(((((((cos(ip)6)÷16)cos(3pi)6)÷16)cos(5pi)6)÷16)cos(7pi)6)÷16
Multiply the terms
More Steps

Multiply the terms
cos(ip)6
Rewrite the expression
cos(−p6)
Use the commutative property to reorder the terms
−cosp6
(((((((−cosp6)÷16)cos(3pi)6)÷16)cos(5pi)6)÷16)cos(7pi)6)÷16
Divide the terms
More Steps

Evaluate
(−cosp6)÷16
Rewrite the expression
16−cosp6
Use b−a=−ba=−ba to rewrite the fraction
−16cosp6
((((((−16cosp6)cos(3pi)6)÷16)cos(5pi)6)÷16)cos(7pi)6)÷16
Remove the parentheses
(((((−16cosp6cos(3pi)6)÷16)cos(5pi)6)÷16)cos(7pi)6)÷16
Multiply the numbers
(((((−16cosp6cos(3ip)6)÷16)cos(5pi)6)÷16)cos(7pi)6)÷16
Multiply the terms
More Steps

Multiply the terms
−16cosp6cos(3ip)6
Multiply the terms
More Steps

Evaluate
16cosp6cos(3ip)6
Multiply the terms
16c2osp6os(3ip)6
Multiply the terms
16c2o2sp6s(3ip)6
Multiply the terms
16c2o2s2p6(3ip)6
Multiply the terms
16c2o2s2p6(3ip)6
Multiply the terms
16−729c2o2s2p12
Use b−a=−ba=−ba to rewrite the fraction
−16729c2o2s2p12
−(−16729c2o2s2p12)
Multiply the terms
16729c2o2s2p12
((((16729c2o2s2p12÷16)cos(5pi)6)÷16)cos(7pi)6)÷16
Divide the terms
More Steps

Evaluate
16729c2o2s2p12÷16
Multiply by the reciprocal
16729c2o2s2p12×161
Multiply the terms
16×16729c2o2s2p12
Multiply the terms
256729c2o2s2p12
(((256729c2o2s2p12cos(5pi)6)÷16)cos(7pi)6)÷16
Multiply the numbers
(((256729c2o2s2p12cos(5ip)6)÷16)cos(7pi)6)÷16
Multiply the terms
More Steps

Multiply the terms
256729c2o2s2p12cos(5ip)6
Multiply the terms
More Steps

Multiply the terms
256729c2o2s2p12c
Multiply the terms
256729c2o2s2p12c
Multiply the terms
256729c3o2s2p12
256729c3o2s2p12os(5ip)6
Multiply the terms
More Steps

Multiply the terms
256729c3o2s2p12o
Multiply the terms
256729c3o2s2p12o
Multiply the terms
256729c3o3s2p12
256729c3o3s2p12s(5ip)6
Multiply the terms
More Steps

Multiply the terms
256729c3o3s2p12s
Multiply the terms
256729c3o3s2p12s
Multiply the terms
256729c3o3s3p12
256729c3o3s3p12(5ip)6
Multiply the terms
256729c3o3s3p12(5ip)6
Multiply the terms
More Steps

Evaluate
729c3o3s3p12(5ip)6
Rewrite the expression
729c3o3s3p12(−15625p6)
Multiply the numbers
−11390625c3o3s3p12×p6
Multiply the terms
−11390625c3o3s3p18
256−11390625c3o3s3p18
Use b−a=−ba=−ba to rewrite the fraction
−25611390625c3o3s3p18
(((−25611390625c3o3s3p18)÷16)cos(7pi)6)÷16
Divide the terms
More Steps

Evaluate
(−25611390625c3o3s3p18)÷16
Multiply by the reciprocal
−25611390625c3o3s3p18×161
Multiply the terms
−256×1611390625c3o3s3p18
Multiply the terms
−409611390625c3o3s3p18
((−409611390625c3o3s3p18)cos(7pi)6)÷16
Remove the parentheses
(−409611390625c3o3s3p18cos(7pi)6)÷16
Multiply the numbers
(−409611390625c3o3s3p18cos(7ip)6)÷16
Multiply the terms
More Steps

Multiply the terms
−409611390625c3o3s3p18cos(7ip)6
Multiply the terms
More Steps

Evaluate
409611390625c3o3s3p18cos(7ip)6
Multiply the terms
409611390625c4o3s3p18os(7ip)6
Multiply the terms
409611390625c4o4s3p18s(7ip)6
Multiply the terms
409611390625c4o4s4p18(7ip)6
Multiply the terms
409611390625c4o4s4p18(7ip)6
Multiply the terms
4096−11390625×76c4o4s4p24
Use b−a=−ba=−ba to rewrite the fraction
−409611390625×76c4o4s4p24
−(−409611390625×76c4o4s4p24)
Multiply the terms
409611390625×76c4o4s4p24
409611390625×76c4o4s4p24÷16
Multiply by the reciprocal
409611390625×76c4o4s4p24×161
Multiply the terms
4096×1611390625×76c4o4s4p24
Solution
6553611390625×76c4o4s4p24
Show Solution
