Question
Solve the equation
n=11
Evaluate
(14−n)!(17−n)!=5!
Find the domain
More Steps

Evaluate
⎩⎨⎧(14−n)!=017−n∈N14−n∈N
Calculate
More Steps

Evaluate
(14−n)!=0
Rewrite the expression
1=0
The statement is true for any value of n
n∈R
⎩⎨⎧n∈R17−n∈N14−n∈N
Find the intersection
⎩⎨⎧14−n∈N17−n∈Nn∈R
Calculate
14−n∈N,17−n∈N,n∈R
(14−n)!(17−n)!=5!,14−n∈N,17−n∈N,n∈R
Divide the terms
More Steps

Evaluate
(14−n)!(17−n)!
Factor the expression
(14−n)!(14−n)!×(17−n)(16−n)(15−n)
Reduce the fraction
(17−n)(16−n)(15−n)
(17−n)(16−n)(15−n)=5!
Evaluate
(17−n)(16−n)(15−n)=120
Expand the expression
More Steps

Evaluate
(17−n)(16−n)(15−n)
Multiply the terms
More Steps

Evaluate
(17−n)(16−n)
Apply the distributive property
17×16−17n−n×16−(−n×n)
Multiply the numbers
272−17n−n×16−(−n×n)
Use the commutative property to reorder the terms
272−17n−16n−(−n×n)
Multiply the terms
272−17n−16n−(−n2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
272−17n−16n+n2
Subtract the terms
272−33n+n2
(272−33n+n2)(15−n)
Apply the distributive property
272×15−272n−33n×15−(−33n×n)+n2×15−n2×n
Multiply the numbers
4080−272n−33n×15−(−33n×n)+n2×15−n2×n
Multiply the numbers
4080−272n−495n−(−33n×n)+n2×15−n2×n
Multiply the terms
4080−272n−495n−(−33n2)+n2×15−n2×n
Use the commutative property to reorder the terms
4080−272n−495n−(−33n2)+15n2−n2×n
Multiply the terms
More Steps

Evaluate
n2×n
Use the product rule an×am=an+m to simplify the expression
n2+1
Add the numbers
n3
4080−272n−495n−(−33n2)+15n2−n3
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
4080−272n−495n+33n2+15n2−n3
Subtract the terms
More Steps

Evaluate
−272n−495n
Collect like terms by calculating the sum or difference of their coefficients
(−272−495)n
Subtract the numbers
−767n
4080−767n+33n2+15n2−n3
Add the terms
More Steps

Evaluate
33n2+15n2
Collect like terms by calculating the sum or difference of their coefficients
(33+15)n2
Add the numbers
48n2
4080−767n+48n2−n3
4080−767n+48n2−n3=120
Move the expression to the left side
4080−767n+48n2−n3−120=0
Subtract the numbers
3960−767n+48n2−n3=0
Factor the expression
(11−n)(360−37n+n2)=0
Separate the equation into 2 possible cases
11−n=0360−37n+n2=0
Solve the equation
More Steps

Evaluate
11−n=0
Move the constant to the right-hand side and change its sign
−n=0−11
Removing 0 doesn't change the value,so remove it from the expression
−n=−11
Change the signs on both sides of the equation
n=11
n=11360−37n+n2=0
Solve the equation
More Steps

Evaluate
360−37n+n2=0
Rewrite in standard form
n2−37n+360=0
Substitute a=1,b=−37 and c=360 into the quadratic formula n=2a−b±b2−4ac
n=237±(−37)2−4×360
Simplify the expression
More Steps

Evaluate
(−37)2−4×360
Multiply the numbers
(−37)2−1440
Rewrite the expression
372−1440
Evaluate the power
1369−1440
Subtract the numbers
−71
n=237±−71
The expression is undefined in the set of real numbers
n∈/R
n=11n∈/R
Find the union
n=11
Check if the solution is in the defined range
n=11,14−n∈N,17−n∈N,n∈R
Solution
n=11
Show Solution
