Question
Simplify the expression
−13957−139591i
Evaluate
(−18−6i2−8i)(−186i28i)
Divide the terms
More Steps

Evaluate
−18−6i2−8i
Factor the number
2(−9−3i)2(1−4i)
Reduce the fraction
−9+3i1−4i
Rewrite the expression
−9−3i1−4i
Multiply by the Conjugate
(−9−3i)(−9+3i)(1−4i)(−9+3i)
Calculate
More Steps

Evaluate
(1−4i)(−9+3i)
Apply the distributive property
−9+3i−4i(−9)−4i×3i
Multiply the numbers
−9+3i+36i−4i×3i
Multiply the numbers
−9+3i+36i+12
Calculate
3+3i+36i
Multiply the numbers
3+39i
(−9−3i)(−9+3i)3+39i
Calculate
More Steps

Evaluate
(−9−3i)(−9+3i)
Use (a−b)(a+b)=a2−b2 to simplify the product
(−9)2−(3i)2
Evaluate the power
81−(3i)2
Evaluate the power
81−(−9)
Calculate
90
903+39i
Rewrite the expression
903(1+13i)
Cancel out the common factor 3
301+13i
Simplify
301+3013i
(301+3013i)(−186i28i)
Divide the terms
More Steps

Evaluate
−186i28i
Factor the number
−93×2i14×2i
Reduce the fraction
−9314
(301+3013i)(−9314)
Apply the distributive property
301(−9314)+3013i(−9314)
Multiply the numbers
More Steps

Evaluate
301(−9314)
Multiplying or dividing an odd number of negative terms equals a negative
−301×9314
Reduce the numbers
−151×937
To multiply the fractions,multiply the numerators and denominators separately
−15×937
Multiply the numbers
−13957
−13957+3013i(−9314)
Solution
−13957−139591i
Show Solution
