Question
Solve the equation
b∈/R
Alternative Form
No real solution
Evaluate
b−22b−3=(3×b2b)
Remove the parentheses
b−22b−3=3×b2b
Simplify
More Steps

Evaluate
3×b2b
Divide the terms
More Steps

Evaluate
b2b
Use the product rule aman=an−m to simplify the expression
b2−11
Reduce the fraction
b1
3×b1
Multiply the terms
b3
b−22b−3=b3
Cross multiply
(2b−3)b=(b−2)×3
Simplify the equation
b(2b−3)=(b−2)×3
Simplify the equation
b(2b−3)=3(b−2)
Calculate
More Steps

Evaluate
b(2b−3)
Apply the distributive property
b×2b−b×3
Multiply the terms
More Steps

Evaluate
b×2b
Use the commutative property to reorder the terms
2b×b
Multiply the terms
2b2
2b2−b×3
Use the commutative property to reorder the terms
2b2−3b
2b2−3b=3(b−2)
Calculate
More Steps

Evaluate
3(b−2)
Apply the distributive property
3b−3×2
Multiply the numbers
3b−6
2b2−3b=3b−6
Move the expression to the left side
2b2−3b−(3b−6)=0
Calculate
More Steps

Add the terms
2b2−3b−(3b−6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2b2−3b−3b+6
Subtract the terms
More Steps

Evaluate
−3b−3b
Collect like terms by calculating the sum or difference of their coefficients
(−3−3)b
Subtract the numbers
−6b
2b2−6b+6
2b2−6b+6=0
Substitute a=2,b=−6 and c=6 into the quadratic formula b=2a−b±b2−4ac
b=2×26±(−6)2−4×2×6
Simplify the expression
b=46±(−6)2−4×2×6
Simplify the expression
More Steps

Evaluate
(−6)2−4×2×6
Multiply the terms
More Steps

Multiply the terms
4×2×6
Multiply the terms
8×6
Multiply the numbers
48
(−6)2−48
Rewrite the expression
62−48
Evaluate the power
36−48
Subtract the numbers
−12
b=46±−12
Solution
b∈/R
Alternative Form
No real solution
Show Solution
