Question
Simplify the expression
4x
Evaluate
((2x×1)(2x×1)×2x2)÷((1÷2)×2x2×2x)
Remove the parentheses
(2x×1×2x×1×2x2)÷((1÷2)×2x2×2x)
Multiply the terms
More Steps

Multiply the terms
2x×1×2x×1×2x2
Rewrite the expression
2x×2x×2x2
Multiply the terms with the same base by adding their exponents
21+1+1x×x×x2
Add the numbers
23x×x×x2
Multiply the terms with the same base by adding their exponents
23x1+2×x
Add the numbers
23x3×x
Multiply the terms with the same base by adding their exponents
23x1+3
Add the numbers
23x4
23x4÷((1÷2)×2x2×2x)
Divide the numbers
23x4÷(0.5×2x2×2x)
Multiply
More Steps

Multiply the terms
0.5×2x2×2x
Multiply the terms
More Steps

Evaluate
0.5×2×2
Multiply the terms
1×2
Any expression multiplied by 1 remains the same
2
2x2×x
Multiply the terms with the same base by adding their exponents
2x2+1
Add the numbers
2x3
23x4÷2x3
Rewrite the expression
2x323x4
Use the product rule aman=an−m to simplify the expression
223x4−3
Reduce the fraction
223x
Reduce the fraction
More Steps

Evaluate
223
Use the product rule aman=an−m to simplify the expression
23−1
Subtract the terms
22
22x
Solution
4x
Show Solution

Find the excluded values
x=0
Evaluate
((2x×1)(2x×1)(2x2))÷((1÷2)(2x2)(2x))
To find the excluded values,set the denominators equal to 0
(1÷2)(2x2)(2x)=0
Solution
More Steps

Evaluate
(1÷2)×2x2×2x=0
Simplify
More Steps

Evaluate
(1÷2)×2x2×2x
Divide the numbers
0.5×2x2×2x
Multiply the terms
2x2×x
Multiply the terms with the same base by adding their exponents
2x2+1
Add the numbers
2x3
2x3=0
Rewrite the expression
x3=0
The only way a power can be 0 is when the base equals 0
x=0
x=0
Show Solution

Find the roots
x∈∅
Evaluate
((2x×1)(2x×1)(2x2))÷((1÷2)(2x2)(2x))
To find the roots of the expression,set the expression equal to 0
((2x×1)(2x×1)(2x2))÷((1÷2)(2x2)(2x))=0
Find the domain
More Steps

Evaluate
(1÷2)×2x2×2x=0
Simplify
More Steps

Evaluate
(1÷2)×2x2×2x
Divide the numbers
0.5×2x2×2x
Multiply the terms
2x2×x
Multiply the terms with the same base by adding their exponents
2x2+1
Add the numbers
2x3
2x3=0
Rewrite the expression
x3=0
The only way a power can not be 0 is when the base not equals 0
x=0
((2x×1)(2x×1)(2x2))÷((1÷2)(2x2)(2x))=0,x=0
Calculate
((2x×1)(2x×1)(2x2))÷((1÷2)(2x2)(2x))=0
Multiply the terms
(2x(2x×1)(2x2))÷((1÷2)(2x2)(2x))=0
Multiply the terms
(2x×2x(2x2))÷((1÷2)(2x2)(2x))=0
Multiply the terms
(2x×2x×2x2)÷((1÷2)(2x2)(2x))=0
Multiply
More Steps

Multiply the terms
2x×2x×2x2
Multiply the terms with the same base by adding their exponents
21+1+1x×x×x2
Add the numbers
23x×x×x2
Multiply the terms with the same base by adding their exponents
23x1+2×x
Add the numbers
23x3×x
Multiply the terms with the same base by adding their exponents
23x1+3
Add the numbers
23x4
23x4÷((1÷2)(2x2)(2x))=0
Divide the numbers
23x4÷(0.5(2x2)(2x))=0
Multiply the terms
23x4÷(0.5×2x2(2x))=0
Multiply the terms
23x4÷(0.5×2x2×2x)=0
Multiply
More Steps

Multiply the terms
0.5×2x2×2x
Multiply the terms
More Steps

Evaluate
0.5×2×2
Multiply the terms
1×2
Any expression multiplied by 1 remains the same
2
2x2×x
Multiply the terms with the same base by adding their exponents
2x2+1
Add the numbers
2x3
23x4÷2x3=0
Divide the terms
More Steps

Evaluate
23x4÷2x3
Rewrite the expression
2x323x4
Use the product rule aman=an−m to simplify the expression
223x4−3
Reduce the fraction
223x
Reduce the fraction
More Steps

Evaluate
223
Use the product rule aman=an−m to simplify the expression
23−1
Subtract the terms
22
22x
22x=0
Rewrite the expression
x=0
Check if the solution is in the defined range
x=0,x=0
Solution
x∈∅
Show Solution
