Question
Simplify the expression
22142−15x2
Evaluate
((35−17)×238−5x2×6)÷4
Subtract the numbers
(18×238−5x2×6)÷4
Multiply the numbers
(4284−5x2×6)÷4
Multiply the terms
(4284−30x2)÷4
Rewrite the expression
44284−30x2
Factor
42(2142−15x2)
Solution
22142−15x2
Show Solution

Find the roots
x1=−53570,x2=53570
Alternative Form
x1≈−11.949895,x2≈11.949895
Evaluate
((35−17)×238−5x2×6)÷4
To find the roots of the expression,set the expression equal to 0
((35−17)×238−5x2×6)÷4=0
Subtract the numbers
(18×238−5x2×6)÷4=0
Multiply the numbers
(4284−5x2×6)÷4=0
Multiply the terms
(4284−30x2)÷4=0
Divide the terms
More Steps

Evaluate
(4284−30x2)÷4
Rewrite the expression
44284−30x2
Factor
42(2142−15x2)
Reduce the fraction
22142−15x2
22142−15x2=0
Simplify
2142−15x2=0
Rewrite the expression
−15x2=−2142
Change the signs on both sides of the equation
15x2=2142
Divide both sides
1515x2=152142
Divide the numbers
x2=152142
Cancel out the common factor 3
x2=5714
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±5714
Simplify the expression
More Steps

Evaluate
5714
To take a root of a fraction,take the root of the numerator and denominator separately
5714
Multiply by the Conjugate
5×5714×5
Multiply the numbers
More Steps

Evaluate
714×5
The product of roots with the same index is equal to the root of the product
714×5
Calculate the product
3570
5×53570
When a square root of an expression is multiplied by itself,the result is that expression
53570
x=±53570
Separate the equation into 2 possible cases
x=53570x=−53570
Solution
x1=−53570,x2=53570
Alternative Form
x1≈−11.949895,x2≈11.949895
Show Solution
