Question
Simplify the expression
1936sqrt31944sqrt−2−4
Evaluate
((4(sqrt×222))((3(sqrt×223))−2)1÷2)−((4×12)((3×13)−2)1÷2)
Remove the parentheses
(4sqrt×222((3sqrt×223)−2)1÷2)−(4×12×((3×13)−2)1÷2)
Multiply the numbers
More Steps

Multiply the terms
3sqrt×223
Multiply the numbers
More Steps

Evaluate
3×223
Evaluate the power
3×10648
Multiply the numbers
31944
31944sqrt
(4sqrt×222(31944sqrt−2)1÷2)−(4×12×((3×13)−2)1÷2)
Divide the numbers
(4sqrt×222(31944sqrt−2)0.5)−(4×12×((3×13)−2)1÷2)
Convert the decimal into a fraction
More Steps

Evaluate
0.5
Convert the decimal into a fraction
105
Reduce the fraction
21
(4sqrt×222(31944sqrt−2)21)−(4×12×((3×13)−2)1÷2)
Multiply the numbers
More Steps

Multiply the terms
4sqrt×222(31944sqrt−2)21
Multiply the numbers
More Steps

Evaluate
4×222
Evaluate the power
4×484
Multiply the numbers
1936
1936sqrt(31944sqrt−2)21
1936sqrt(31944sqrt−2)21−(4×12×((3×13)−2)1÷2)
1 raised to any power equals to 1
1936sqrt(31944sqrt−2)21−(4×12×((3×1)−2)1÷2)
Any expression multiplied by 1 remains the same
1936sqrt(31944sqrt−2)21−(4×12×(3−2)1÷2)
Subtract the numbers
1936sqrt(31944sqrt−2)21−(4×12×11÷2)
1 raised to any power equals to 1
1936sqrt(31944sqrt−2)21−(4×1×11÷2)
Divide the numbers
1936sqrt(31944sqrt−2)21−(4×1×10.5)
Calculate
More Steps

Evaluate
10.5
Convert the decimal into a fraction
More Steps

Evaluate
0.5
Convert the decimal into a fraction
105
Reduce the fraction
21
121
1 raised to any power equals to 1
1
1936sqrt(31944sqrt−2)21−(4×1×1)
Multiply the terms
1936sqrt(31944sqrt−2)21−4
Solution
1936sqrt31944sqrt−2−4
Show Solution

Factor the expression
4(484sqrt31944sqrt−2−1)
Evaluate
((4(sqrt×222))((3(sqrt×223))−2)1÷2)−((4×12)((3×13)−2)1÷2)
Remove the parentheses
(4sqrt×222((3sqrt×223)−2)1÷2)−(4×12×((3×13)−2)1÷2)
Use the commutative property to reorder the terms
(4sqrt×222((3×223sqrt)−2)1÷2)−(4×12×((3×13)−2)1÷2)
Multiply the numbers
More Steps

Evaluate
3×223
Evaluate the power
3×10648
Multiply the numbers
31944
Evaluate
31944sqrt
(4sqrt×222(31944sqrt−2)1÷2)−(4×12×((3×13)−2)1÷2)
Divide the numbers
(4sqrt×222(31944sqrt−2)0.5)−(4×12×((3×13)−2)1÷2)
Convert the decimal into a fraction
More Steps

Evaluate
0.5
Convert the decimal into a fraction
105
Reduce the fraction
21
Evaluate
(31944sqrt−2)21
(4sqrt×222(31944sqrt−2)21)−(4×12×((3×13)−2)1÷2)
Use the commutative property to reorder the terms
(4×222sqrt(31944sqrt−2)21)−(4×12×((3×13)−2)1÷2)
Multiply the numbers
More Steps

Evaluate
4×222
Evaluate the power
4×484
Multiply the numbers
1936
Evaluate
1936sqrt
(1936sqrt(31944sqrt−2)21)−(4×12×((3×13)−2)1÷2)
Multiply the terms
1936sqrt(31944sqrt−2)21−(4×12×((3×13)−2)1÷2)
1 raised to any power equals to 1
1936sqrt(31944sqrt−2)21−(4×12×((3×1)−2)1÷2)
Any expression multiplied by 1 remains the same
1936sqrt(31944sqrt−2)21−(4×12×(3−2)1÷2)
Subtract the numbers
1936sqrt(31944sqrt−2)21−(4×12×11÷2)
1 raised to any power equals to 1
1936sqrt(31944sqrt−2)21−(4×1×11÷2)
Divide the numbers
1936sqrt(31944sqrt−2)21−(4×1×10.5)
Calculate
More Steps

Evaluate
10.5
Convert the decimal into a fraction
More Steps

Evaluate
0.5
Convert the decimal into a fraction
105
Reduce the fraction
21
121
1 raised to any power equals to 1
1
1936sqrt(31944sqrt−2)21−(4×1×1)
Any expression multiplied by 1 remains the same
1936sqrt(31944sqrt−2)21−(4×1)
Any expression multiplied by 1 remains the same
1936sqrt(31944sqrt−2)21−4
Use anm=nam to transform the expression
1936sqrt31944sqrt−2−4
Solution
4(484sqrt31944sqrt−2−1)
Show Solution
