Question
Simplify the expression
52x2−10x3+70x4−5x5
Evaluate
((6−x)(x2×11))−(x2−5x4)(14−x)
Remove the parentheses
((6−x)x2×11)−(x2−5x4)(14−x)
Multiply the terms
More Steps

Multiply the terms
(6−x)x2×11
Use the commutative property to reorder the terms
(6−x)×11x2
Multiply the terms
11x2(6−x)
11x2(6−x)−(x2−5x4)(14−x)
Rewrite the expression
11x2(6−x)+(−x2+5x4)(14−x)
Expand the expression
More Steps

Calculate
11x2(6−x)
Apply the distributive property
11x2×6−11x2×x
Multiply the numbers
66x2−11x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
66x2−11x3
66x2−11x3+(−x2+5x4)(14−x)
Expand the expression
More Steps

Calculate
(−x2+5x4)(14−x)
Apply the distributive property
−x2×14−(−x2×x)+5x4×14−5x4×x
Use the commutative property to reorder the terms
−14x2−(−x2×x)+5x4×14−5x4×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
−14x2−(−x3)+5x4×14−5x4×x
Multiply the numbers
−14x2−(−x3)+70x4−5x4×x
Multiply the terms
More Steps

Evaluate
x4×x
Use the product rule an×am=an+m to simplify the expression
x4+1
Add the numbers
x5
−14x2−(−x3)+70x4−5x5
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−14x2+x3+70x4−5x5
66x2−11x3−14x2+x3+70x4−5x5
Subtract the terms
More Steps

Evaluate
66x2−14x2
Collect like terms by calculating the sum or difference of their coefficients
(66−14)x2
Subtract the numbers
52x2
52x2−11x3+x3+70x4−5x5
Solution
More Steps

Evaluate
−11x3+x3
Collect like terms by calculating the sum or difference of their coefficients
(−11+1)x3
Add the numbers
−10x3
52x2−10x3+70x4−5x5
Show Solution

Factor the expression
(52−10x+70x2−5x3)x2
Evaluate
((6−x)(x2×11))−(x2−5x4)(14−x)
Remove the parentheses
((6−x)x2×11)−(x2−5x4)(14−x)
Use the commutative property to reorder the terms
((6−x)×11x2)−(x2−5x4)(14−x)
Multiply the terms
11x2(6−x)−(x2−5x4)(14−x)
Rewrite the expression
11x2(6−x)+(−x2+5x4)(14−x)
Rewrite the expression
11(6−x)x2+(−1+5x2)(14−x)x2
Factor out x2 from the expression
(11(6−x)+(−1+5x2)(14−x))x2
Solution
(52−10x+70x2−5x3)x2
Show Solution

Find the roots
x1=0,x2≈13.909969
Evaluate
((6−x)(x2×11))−(x2−5x4)(14−x)
To find the roots of the expression,set the expression equal to 0
((6−x)(x2×11))−(x2−5x4)(14−x)=0
Use the commutative property to reorder the terms
((6−x)×11x2)−(x2−5x4)(14−x)=0
Multiply the terms
11x2(6−x)−(x2−5x4)(14−x)=0
Rewrite the expression
11x2(6−x)+(−x2+5x4)(14−x)=0
Calculate
More Steps

Evaluate
11x2(6−x)+(−x2+5x4)(14−x)
Expand the expression
More Steps

Calculate
11x2(6−x)
Apply the distributive property
11x2×6−11x2×x
Multiply the numbers
66x2−11x2×x
Multiply the terms
66x2−11x3
66x2−11x3+(−x2+5x4)(14−x)
Expand the expression
More Steps

Calculate
(−x2+5x4)(14−x)
Apply the distributive property
−x2×14−(−x2×x)+5x4×14−5x4×x
Use the commutative property to reorder the terms
−14x2−(−x2×x)+5x4×14−5x4×x
Multiply the terms
−14x2−(−x3)+5x4×14−5x4×x
Multiply the numbers
−14x2−(−x3)+70x4−5x4×x
Multiply the terms
−14x2−(−x3)+70x4−5x5
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−14x2+x3+70x4−5x5
66x2−11x3−14x2+x3+70x4−5x5
Subtract the terms
More Steps

Evaluate
66x2−14x2
Collect like terms by calculating the sum or difference of their coefficients
(66−14)x2
Subtract the numbers
52x2
52x2−11x3+x3+70x4−5x5
Add the terms
More Steps

Evaluate
−11x3+x3
Collect like terms by calculating the sum or difference of their coefficients
(−11+1)x3
Add the numbers
−10x3
52x2−10x3+70x4−5x5
52x2−10x3+70x4−5x5=0
Factor the expression
x2(52−10x+70x2−5x3)=0
Separate the equation into 2 possible cases
x2=052−10x+70x2−5x3=0
The only way a power can be 0 is when the base equals 0
x=052−10x+70x2−5x3=0
Solve the equation
x=0x≈13.909969
Solution
x1=0,x2≈13.909969
Show Solution
