Question
Simplify the expression
−992is2np2co
Evaluate
((sin(8pi)÷3)cos(23pi))÷6
Remove the parentheses
((sin×8pi÷3)cos×23pi)÷6
Multiply the terms
More Steps

Multiply the terms
sin×8pi
Use the commutative property to reorder the terms
isn×8pi
Multiply the numbers
8isnpi
Multiply the numbers
More Steps

Evaluate
8i×i
Multiply
8i2
Use i2=−1 to transform the expression
8(−1)
Calculate
−8
−8snp
(((−8snp)÷3)cos×23pi)÷6
Divide the terms
More Steps

Evaluate
(−8snp)÷3
Rewrite the expression
3−8snp
Use b−a=−ba=−ba to rewrite the fraction
−38snp
((−38snp)cos×23pi)÷6
Remove the parentheses
(−38snpcos×23pi)÷6
Multiply the terms
More Steps

Multiply the terms
−38snpcos×23pi
Multiply the terms
More Steps

Evaluate
38snpcos×23pi
Multiply the terms
38snpcos×23pi
Multiply the terms
38snpcos×23pi
Multiply the terms
38s2npco×23pi
Multiply the terms
3184s2npcopi
Multiply the terms
3184s2np2coi
Multiply the terms
3184s2np2coi
Multiply the terms
3184is2np2co
−3184is2np2co
(−3184is2np2co)÷6
Multiply by the reciprocal
−3184is2np2co×61
Rewrite the expression
−32×92is2np2co×61
Cancel out the common factor 2
−392is2np2co×31
Multiply the terms
−3×392is2np2co
Solution
−992is2np2co
Show Solution
