Question
Simplify the expression
22932s5q5r5t5−7098s4q4r4t4
Evaluate
((sqrt×7sqrt×6)−sqrt×13)(sqrt×7sqrt×6sqrt×13)
Remove the parentheses
((sqrt×7sqrt×6)−sqrt×13)sqrt×7sqrt×6sqrt×13
Rewrite the expression in exponential form
((sqrt×7sqrt×6)−sqrt×13)s3q3r3t3×7×6×13
Multiply
More Steps

Multiply the terms
sqrt×7sqrt×6
Multiply the terms
s2qrt×7qrt×6
Multiply the terms
s2q2rt×7rt×6
Multiply the terms
s2q2r2t×7t×6
Multiply the terms
s2q2r2t2×7×6
Multiply the terms
s2q2r2t2×42
Use the commutative property to reorder the terms
42s2q2r2t2
(42s2q2r2t2−sqrt×13)s3q3r3t3×7×6×13
Use the commutative property to reorder the terms
(42s2q2r2t2−13sqrt)s3q3r3t3×7×6×13
Multiply the terms
More Steps

Evaluate
7×6×13
Multiply the terms
42×13
Multiply the numbers
546
(42s2q2r2t2−13sqrt)s3q3r3t3×546
Use the commutative property to reorder the terms
(42s2q2r2t2−13sqrt)×546s3q3r3t3
Multiply the terms
546s3q3r3t3(42s2q2r2t2−13sqrt)
Apply the distributive property
546s3q3r3t3×42s2q2r2t2−546s3q3r3t3×13sqrt
Multiply the terms
More Steps

Evaluate
546s3q3r3t3×42s2q2r2t2
Multiply the numbers
22932s3q3r3t3s2q2r2t2
Multiply the terms
More Steps

Evaluate
s3×s2
Use the product rule an×am=an+m to simplify the expression
s3+2
Add the numbers
s5
22932s5q3r3t3q2r2t2
Multiply the terms
More Steps

Evaluate
q3×q2
Use the product rule an×am=an+m to simplify the expression
q3+2
Add the numbers
q5
22932s5q5r3t3r2t2
Multiply the terms
More Steps

Evaluate
r3×r2
Use the product rule an×am=an+m to simplify the expression
r3+2
Add the numbers
r5
22932s5q5r5t3×t2
Multiply the terms
More Steps

Evaluate
t3×t2
Use the product rule an×am=an+m to simplify the expression
t3+2
Add the numbers
t5
22932s5q5r5t5
22932s5q5r5t5−546s3q3r3t3×13sqrt
Solution
More Steps

Evaluate
546s3q3r3t3×13sqrt
Multiply the numbers
7098s3q3r3t3sqrt
Multiply the terms
More Steps

Evaluate
s3×s
Use the product rule an×am=an+m to simplify the expression
s3+1
Add the numbers
s4
7098s4q3r3t3qrt
Multiply the terms
More Steps

Evaluate
q3×q
Use the product rule an×am=an+m to simplify the expression
q3+1
Add the numbers
q4
7098s4q4r3t3rt
Multiply the terms
More Steps

Evaluate
r3×r
Use the product rule an×am=an+m to simplify the expression
r3+1
Add the numbers
r4
7098s4q4r4t3×t
Multiply the terms
More Steps

Evaluate
t3×t
Use the product rule an×am=an+m to simplify the expression
t3+1
Add the numbers
t4
7098s4q4r4t4
22932s5q5r5t5−7098s4q4r4t4
Show Solution

Factor the expression
546s4q4r4t4(42sqrt−13)
Evaluate
((sqrt×7sqrt×6)−sqrt×13)(sqrt×7sqrt×6sqrt×13)
Remove the parentheses
((sqrt×7sqrt×6)−sqrt×13)sqrt×7sqrt×6sqrt×13
Multiply
More Steps

Multiply the terms
sqrt×7sqrt×6
Multiply the terms
s2qrt×7qrt×6
Multiply the terms
s2q2rt×7rt×6
Multiply the terms
s2q2r2t×7t×6
Multiply the terms
s2q2r2t2×7×6
Multiply the terms
s2q2r2t2×42
Use the commutative property to reorder the terms
42s2q2r2t2
(42s2q2r2t2−sqrt×13)sqrt×7sqrt×6sqrt×13
Use the commutative property to reorder the terms
(42s2q2r2t2−13sqrt)sqrt×7sqrt×6sqrt×13
Multiply
More Steps

Multiply the terms
sqrt×7sqrt×6sqrt×13
Multiply the terms with the same base by adding their exponents
s1+1+1qrt×7qrt×6qrt×13
Add the numbers
s3qrt×7qrt×6qrt×13
Multiply the terms with the same base by adding their exponents
s3q1+1+1rt×7rt×6rt×13
Add the numbers
s3q3rt×7rt×6rt×13
Multiply the terms with the same base by adding their exponents
s3q3r1+1+1t×7t×6t×13
Add the numbers
s3q3r3t×7t×6t×13
Multiply the terms with the same base by adding their exponents
s3q3r3t1+1+1×7×6×13
Add the numbers
s3q3r3t3×7×6×13
Multiply the terms
More Steps

Evaluate
7×6×13
Multiply the terms
42×13
Multiply the numbers
546
s3q3r3t3×546
Use the commutative property to reorder the terms
546s3q3r3t3
(42s2q2r2t2−13sqrt)×546s3q3r3t3
Multiply the terms
546s3q3r3t3(42s2q2r2t2−13sqrt)
Factor the expression
More Steps

Evaluate
42s2q2r2t2−13sqrt
Rewrite the expression
sqrt×42sqrt−sqrt×13
Factor out sqrt from the expression
sqrt(42sqrt−13)
546s3q3r3t3sqrt(42sqrt−13)
Solution
546s4q4r4t4(42sqrt−13)
Show Solution
