Question
Simplify the expression
−90z3−32z2+72z+32
Evaluate
(−10z−8)(9z2−4z−4)
Apply the distributive property
−10z×9z2−(−10z×4z)−(−10z×4)−8×9z2−(−8×4z)−(−8×4)
Multiply the terms
More Steps

Evaluate
−10z×9z2
Multiply the numbers
−90z×z2
Multiply the terms
More Steps

Evaluate
z×z2
Use the product rule an×am=an+m to simplify the expression
z1+2
Add the numbers
z3
−90z3
−90z3−(−10z×4z)−(−10z×4)−8×9z2−(−8×4z)−(−8×4)
Multiply the terms
More Steps

Evaluate
−10z×4z
Multiply the numbers
−40z×z
Multiply the terms
−40z2
−90z3−(−40z2)−(−10z×4)−8×9z2−(−8×4z)−(−8×4)
Multiply the numbers
−90z3−(−40z2)−(−40z)−8×9z2−(−8×4z)−(−8×4)
Multiply the numbers
−90z3−(−40z2)−(−40z)−72z2−(−8×4z)−(−8×4)
Multiply the numbers
−90z3−(−40z2)−(−40z)−72z2−(−32z)−(−8×4)
Multiply the numbers
−90z3−(−40z2)−(−40z)−72z2−(−32z)−(−32)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−90z3+40z2+40z−72z2+32z+32
Subtract the terms
More Steps

Evaluate
40z2−72z2
Collect like terms by calculating the sum or difference of their coefficients
(40−72)z2
Subtract the numbers
−32z2
−90z3−32z2+40z+32z+32
Solution
More Steps

Evaluate
40z+32z
Collect like terms by calculating the sum or difference of their coefficients
(40+32)z
Add the numbers
72z
−90z3−32z2+72z+32
Show Solution

Factor the expression
−2(5z+4)(9z2−4z−4)
Evaluate
(−10z−8)(9z2−4z−4)
Solution
−2(5z+4)(9z2−4z−4)
Show Solution

Find the roots
z1=−54,z2=92−210,z3=92+210
Alternative Form
z1=−0.8,z2≈−0.480506,z3≈0.924951
Evaluate
(−10z−8)(9z2−4z−4)
To find the roots of the expression,set the expression equal to 0
(−10z−8)(9z2−4z−4)=0
Change the sign
(10z+8)(9z2−4z−4)=0
Separate the equation into 2 possible cases
10z+8=09z2−4z−4=0
Solve the equation
More Steps

Evaluate
10z+8=0
Move the constant to the right-hand side and change its sign
10z=0−8
Removing 0 doesn't change the value,so remove it from the expression
10z=−8
Divide both sides
1010z=10−8
Divide the numbers
z=10−8
Divide the numbers
More Steps

Evaluate
10−8
Cancel out the common factor 2
5−4
Use b−a=−ba=−ba to rewrite the fraction
−54
z=−54
z=−549z2−4z−4=0
Solve the equation
More Steps

Evaluate
9z2−4z−4=0
Substitute a=9,b=−4 and c=−4 into the quadratic formula z=2a−b±b2−4ac
z=2×94±(−4)2−4×9(−4)
Simplify the expression
z=184±(−4)2−4×9(−4)
Simplify the expression
More Steps

Evaluate
(−4)2−4×9(−4)
Multiply
(−4)2−(−144)
Rewrite the expression
42−(−144)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
42+144
Evaluate the power
16+144
Add the numbers
160
z=184±160
Simplify the radical expression
More Steps

Evaluate
160
Write the expression as a product where the root of one of the factors can be evaluated
16×10
Write the number in exponential form with the base of 4
42×10
The root of a product is equal to the product of the roots of each factor
42×10
Reduce the index of the radical and exponent with 2
410
z=184±410
Separate the equation into 2 possible cases
z=184+410z=184−410
Simplify the expression
z=92+210z=184−410
Simplify the expression
z=92+210z=92−210
z=−54z=92+210z=92−210
Solution
z1=−54,z2=92−210,z3=92+210
Alternative Form
z1=−0.8,z2≈−0.480506,z3≈0.924951
Show Solution
