Question
Simplify the expression
b964a
Evaluate
2b3(−2a2×2a−3b−3)3×(−2a4b3)
Multiply
More Steps

Multiply the terms
−2a2×2a−3b−3
Multiply the terms
−4a2×a−3b−3
Multiply the terms with the same base by adding their exponents
−4a2−3b−3
Subtract the numbers
−4a−1b−3
2b3(−4a−1b−3)3×(−2a4b3)
Divide the terms
More Steps

Evaluate
2b3(−4a−1b−3)3
Factor the expression
2b32(−32)a−3b−9
Reduce the fraction
b3−32a−3b−9
Reduce the fraction
More Steps

Calculate
b3b−9
Use the product rule aman=an−m to simplify the expression
b3−(−9)1
Subtract the terms
b121
b12−32a−3
Calculate
−b1232a−3
−b1232a−3×(−2a4b3)
Multiplying or dividing an even number of negative terms equals a positive
b1232a−3×2a4b3
Cancel out the common factor b3
b932a−3×2a4
Multiply the terms
b932a−3×2a4
Solution
More Steps

Evaluate
32a−3×2a4
Multiply the numbers
64a−3×a4
Multiply the terms
More Steps

Evaluate
a−3×a4
Use the product rule an×am=an+m to simplify the expression
a−3+4
Add the numbers
a
64a
b964a
Show Solution
