Question
Simplify the expression
−b3900b7+6
Evaluate
b3−3b4×30b2×10b−6
Multiply
More Steps

Multiply the terms
−3b4×30b2×10b
Multiply the terms
More Steps

Evaluate
3×30×10
Multiply the terms
90×10
Multiply the numbers
900
−900b4×b2×b
Multiply the terms with the same base by adding their exponents
−900b4+2+1
Add the numbers
−900b7
b3−900b7−6
Solution
−b3900b7+6
Show Solution

Find the excluded values
b=0
Evaluate
b3−3b4×30b2×10b−6
To find the excluded values,set the denominators equal to 0
b3=0
Solution
b=0
Show Solution

Find the roots
b=−15071506
Alternative Form
b≈−0.488798
Evaluate
b3−3b4×30b2×10b−6
To find the roots of the expression,set the expression equal to 0
b3−3b4×30b2×10b−6=0
The only way a power can not be 0 is when the base not equals 0
b3−3b4×30b2×10b−6=0,b=0
Calculate
b3−3b4×30b2×10b−6=0
Multiply
More Steps

Multiply the terms
−3b4×30b2×10b
Multiply the terms
More Steps

Evaluate
3×30×10
Multiply the terms
90×10
Multiply the numbers
900
−900b4×b2×b
Multiply the terms with the same base by adding their exponents
−900b4+2+1
Add the numbers
−900b7
b3−900b7−6=0
Cross multiply
−900b7−6=b3×0
Simplify the equation
−900b7−6=0
Move the constant to the right side
−900b7=6
Change the signs on both sides of the equation
900b7=−6
Divide both sides
900900b7=900−6
Divide the numbers
b7=900−6
Divide the numbers
More Steps

Evaluate
900−6
Cancel out the common factor 6
150−1
Use b−a=−ba=−ba to rewrite the fraction
−1501
b7=−1501
Take the 7-th root on both sides of the equation
7b7=7−1501
Calculate
b=7−1501
Simplify the root
More Steps

Evaluate
7−1501
An odd root of a negative radicand is always a negative
−71501
To take a root of a fraction,take the root of the numerator and denominator separately
−715071
Simplify the radical expression
−71501
Multiply by the Conjugate
7150×71506−71506
Multiply the numbers
More Steps

Evaluate
7150×71506
The product of roots with the same index is equal to the root of the product
7150×1506
Calculate the product
71507
Reduce the index of the radical and exponent with 7
150
150−71506
Calculate
−15071506
b=−15071506
Check if the solution is in the defined range
b=−15071506,b=0
Solution
b=−15071506
Alternative Form
b≈−0.488798
Show Solution
