Question
Simplify the expression
−30f2−50f
Evaluate
(−3f−5)(10f×1)
Remove the parentheses
(−3f−5)×10f×1
Any expression multiplied by 1 remains the same
(−3f−5)×10f
Multiply the first two terms
10(−3f−5)f
Multiply the terms
More Steps

Evaluate
10(−3f−5)
Apply the distributive property
10(−3f)−10×5
Multiply the numbers
More Steps

Evaluate
10(−3)
Multiplying or dividing an odd number of negative terms equals a negative
−10×3
Multiply the numbers
−30
−30f−10×5
Multiply the numbers
−30f−50
(−30f−50)f
Apply the distributive property
−30f×f−50f
Solution
−30f2−50f
Show Solution

Find the roots
f1=−35,f2=0
Alternative Form
f1=−1.6˙,f2=0
Evaluate
(−3f−5)(10f×1)
To find the roots of the expression,set the expression equal to 0
(−3f−5)(10f×1)=0
Multiply the terms
(−3f−5)×10f=0
Multiply the terms
10f(−3f−5)=0
Elimination the left coefficient
f(−3f−5)=0
Separate the equation into 2 possible cases
f=0−3f−5=0
Solve the equation
More Steps

Evaluate
−3f−5=0
Move the constant to the right-hand side and change its sign
−3f=0+5
Removing 0 doesn't change the value,so remove it from the expression
−3f=5
Change the signs on both sides of the equation
3f=−5
Divide both sides
33f=3−5
Divide the numbers
f=3−5
Use b−a=−ba=−ba to rewrite the fraction
f=−35
f=0f=−35
Solution
f1=−35,f2=0
Alternative Form
f1=−1.6˙,f2=0
Show Solution
