Question
Simplify the expression
−48x4−16x3
Evaluate
(−3x−1)(2x2×8x×1)
Remove the parentheses
(−3x−1)×2x2×8x×1
Rewrite the expression
(−3x−1)×2x2×8x
Multiply the terms
(−3x−1)×16x2×x
Multiply the terms with the same base by adding their exponents
(−3x−1)×16x2+1
Add the numbers
(−3x−1)×16x3
Multiply the terms
16x3(−3x−1)
Apply the distributive property
16x3(−3x)−16x3×1
Multiply the terms
More Steps

Evaluate
16x3(−3x)
Multiply the numbers
More Steps

Evaluate
16(−3)
Multiplying or dividing an odd number of negative terms equals a negative
−16×3
Multiply the numbers
−48
−48x3×x
Multiply the terms
More Steps

Evaluate
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
−48x4
−48x4−16x3×1
Solution
−48x4−16x3
Show Solution

Find the roots
x1=−31,x2=0
Alternative Form
x1=−0.3˙,x2=0
Evaluate
(−3x−1)(2x2×8x×1)
To find the roots of the expression,set the expression equal to 0
(−3x−1)(2x2×8x×1)=0
Multiply the terms
More Steps

Multiply the terms
2x2×8x×1
Rewrite the expression
2x2×8x
Multiply the terms
16x2×x
Multiply the terms with the same base by adding their exponents
16x2+1
Add the numbers
16x3
(−3x−1)×16x3=0
Multiply the terms
16x3(−3x−1)=0
Elimination the left coefficient
x3(−3x−1)=0
Separate the equation into 2 possible cases
x3=0−3x−1=0
The only way a power can be 0 is when the base equals 0
x=0−3x−1=0
Solve the equation
More Steps

Evaluate
−3x−1=0
Move the constant to the right-hand side and change its sign
−3x=0+1
Removing 0 doesn't change the value,so remove it from the expression
−3x=1
Change the signs on both sides of the equation
3x=−1
Divide both sides
33x=3−1
Divide the numbers
x=3−1
Use b−a=−ba=−ba to rewrite the fraction
x=−31
x=0x=−31
Solution
x1=−31,x2=0
Alternative Form
x1=−0.3˙,x2=0
Show Solution
