Question
Simplify the expression
4x3+4x5+5x2+5x4
Evaluate
(−4x−5)(−x2−x4)
Apply the distributive property
−4x(−x2)−(−4x×x4)−5(−x2)−(−5x4)
Multiply the terms
More Steps

Evaluate
−4x(−x2)
Multiply the numbers
4x×x2
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
4x3
4x3−(−4x×x4)−5(−x2)−(−5x4)
Multiply the terms
More Steps

Evaluate
x×x4
Use the product rule an×am=an+m to simplify the expression
x1+4
Add the numbers
x5
4x3−(−4x5)−5(−x2)−(−5x4)
Multiply the numbers
4x3−(−4x5)+5x2−(−5x4)
Solution
4x3+4x5+5x2+5x4
Show Solution

Factor the expression
x2(4x+5)(1+x2)
Evaluate
(−4x−5)(−x2−x4)
Factor the expression
−(4x+5)(−x2−x4)
Factor the expression
More Steps

Evaluate
−x2−x4
Rewrite the expression
−x2−x2×x2
Factor out −x2 from the expression
−x2(1+x2)
−(4x+5)(−x2)(1+x2)
Solution
x2(4x+5)(1+x2)
Show Solution

Find the roots
x1=−i,x2=i,x3=−45,x4=0
Alternative Form
x1=−i,x2=i,x3=−1.25,x4=0
Evaluate
(−4x−5)(−x2−x4)
To find the roots of the expression,set the expression equal to 0
(−4x−5)(−x2−x4)=0
Change the sign
(4x+5)(−x2−x4)=0
Separate the equation into 2 possible cases
4x+5=0−x2−x4=0
Solve the equation
More Steps

Evaluate
4x+5=0
Move the constant to the right-hand side and change its sign
4x=0−5
Removing 0 doesn't change the value,so remove it from the expression
4x=−5
Divide both sides
44x=4−5
Divide the numbers
x=4−5
Use b−a=−ba=−ba to rewrite the fraction
x=−45
x=−45−x2−x4=0
Solve the equation
More Steps

Evaluate
−x2−x4=0
Factor the expression
−x2(1+x2)=0
Divide both sides
x2(1+x2)=0
Separate the equation into 2 possible cases
x2=01+x2=0
The only way a power can be 0 is when the base equals 0
x=01+x2=0
Solve the equation
More Steps

Evaluate
1+x2=0
Move the constant to the right-hand side and change its sign
x2=0−1
Removing 0 doesn't change the value,so remove it from the expression
x2=−1
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±−1
Simplify the expression
x=±i
Separate the equation into 2 possible cases
x=ix=−i
x=0x=ix=−i
x=−45x=0x=ix=−i
Solution
x1=−i,x2=i,x3=−45,x4=0
Alternative Form
x1=−i,x2=i,x3=−1.25,x4=0
Show Solution
