Question
Simplify the expression
4y4+6y3
Evaluate
(−4y−6)(−y3)
Use the rules for multiplication and division
−(−4y−6)y3
Multiply the terms
−y3(−4y−6)
Apply the distributive property
−y3(−4y)−(−y3×6)
Multiply the terms
More Steps

Evaluate
−y3(−4y)
Multiply the numbers
4y3×y
Multiply the terms
More Steps

Evaluate
y3×y
Use the product rule an×am=an+m to simplify the expression
y3+1
Add the numbers
y4
4y4
4y4−(−y3×6)
Use the commutative property to reorder the terms
4y4−(−6y3)
Solution
4y4+6y3
Show Solution

Factor the expression
2y3(2y+3)
Evaluate
(−4y−6)(−y3)
Multiply the terms
−y3(−4y−6)
Factor the expression
−y3(−2)(2y+3)
Solution
2y3(2y+3)
Show Solution

Find the roots
y1=−23,y2=0
Alternative Form
y1=−1.5,y2=0
Evaluate
(−4y−6)(−y3)
To find the roots of the expression,set the expression equal to 0
(−4y−6)(−y3)=0
Multiply the terms
−y3(−4y−6)=0
Change the sign
y3(−4y−6)=0
Separate the equation into 2 possible cases
y3=0−4y−6=0
The only way a power can be 0 is when the base equals 0
y=0−4y−6=0
Solve the equation
More Steps

Evaluate
−4y−6=0
Move the constant to the right-hand side and change its sign
−4y=0+6
Removing 0 doesn't change the value,so remove it from the expression
−4y=6
Change the signs on both sides of the equation
4y=−6
Divide both sides
44y=4−6
Divide the numbers
y=4−6
Divide the numbers
More Steps

Evaluate
4−6
Cancel out the common factor 2
2−3
Use b−a=−ba=−ba to rewrite the fraction
−23
y=−23
y=0y=−23
Solution
y1=−23,y2=0
Alternative Form
y1=−1.5,y2=0
Show Solution
