Question
Simplify the expression
15−50i
Evaluate
(−5i3)(−8−3i)−10i
Remove the parentheses
−5i3(−8−3i)−10i
Evaluate the power
More Steps

Evaluate
i3
Calculate
i2×i
Calculate
−i
−5(−i)(−8−3i)−10i
Multiply the terms
More Steps

Multiply the terms
−5(−i)(−8−3i)
Multiply the first two terms
5i(−8−3i)
Apply the distributive property
5i(−8)+5i(−3i)
Multiply the numbers
−40i+5i(−3i)
Multiply the numbers
More Steps

Evaluate
5i(−3i)
Multiply
5(−3)i2
Multiply
−15i2
Use i2=−1 to transform the expression
−15(−1)
Calculate
15
−40i+15
Reorder the terms
15−40i
15−40i−10i
Add the numbers
15+(−40−10)i
Solution
15−50i
Show Solution
