Question
Simplify the expression
−180x10+4320x9−258x4+6192x3
Evaluate
(−5x4×6x2−43)(6x4−x2×12x×12)
Multiply
More Steps

Multiply the terms
−5x4×6x2
Multiply the terms
−30x4×x2
Multiply the terms with the same base by adding their exponents
−30x4+2
Add the numbers
−30x6
(−30x6−43)(6x4−x2×12x×12)
Multiply
More Steps

Multiply the terms
x2×12x×12
Multiply the terms with the same base by adding their exponents
x2+1×12×12
Add the numbers
x3×12×12
Multiply the terms
x3×144
Use the commutative property to reorder the terms
144x3
(−30x6−43)(6x4−144x3)
Apply the distributive property
−30x6×6x4−(−30x6×144x3)−43×6x4−(−43×144x3)
Multiply the terms
More Steps

Evaluate
−30x6×6x4
Multiply the numbers
−180x6×x4
Multiply the terms
More Steps

Evaluate
x6×x4
Use the product rule an×am=an+m to simplify the expression
x6+4
Add the numbers
x10
−180x10
−180x10−(−30x6×144x3)−43×6x4−(−43×144x3)
Multiply the terms
More Steps

Evaluate
−30x6×144x3
Multiply the numbers
−4320x6×x3
Multiply the terms
More Steps

Evaluate
x6×x3
Use the product rule an×am=an+m to simplify the expression
x6+3
Add the numbers
x9
−4320x9
−180x10−(−4320x9)−43×6x4−(−43×144x3)
Multiply the numbers
−180x10−(−4320x9)−258x4−(−43×144x3)
Multiply the numbers
−180x10−(−4320x9)−258x4−(−6192x3)
Solution
−180x10+4320x9−258x4+6192x3
Show Solution

Factor the expression
−6x3(30x6+43)(x−24)
Evaluate
(−5x4×6x2−43)(6x4−x2×12x×12)
Multiply
More Steps

Multiply the terms
−5x4×6x2
Multiply the terms
−30x4×x2
Multiply the terms with the same base by adding their exponents
−30x4+2
Add the numbers
−30x6
(−30x6−43)(6x4−x2×12x×12)
Multiply
More Steps

Multiply the terms
x2×12x×12
Multiply the terms with the same base by adding their exponents
x2+1×12×12
Add the numbers
x3×12×12
Multiply the terms
x3×144
Use the commutative property to reorder the terms
144x3
(−30x6−43)(6x4−144x3)
Factor the expression
−(30x6+43)(6x4−144x3)
Factor the expression
More Steps

Evaluate
6x4−144x3
Rewrite the expression
6x3×x−6x3×24
Factor out 6x3 from the expression
6x3(x−24)
−(30x6+43)×6x3(x−24)
Solution
−6x3(30x6+43)(x−24)
Show Solution

Find the roots
x1=0,x2=24,x3=−206387×105−60643×305i,x4=206387×105+60643×305i
Alternative Form
x1=0,x2=24,x3≈−0.919578−0.530919i,x4≈0.919578+0.530919i
Evaluate
(−5x4×6x2−43)(6x4−x2×12x×12)
To find the roots of the expression,set the expression equal to 0
(−5x4×6x2−43)(6x4−x2×12x×12)=0
Multiply
More Steps

Multiply the terms
−5x4×6x2
Multiply the terms
−30x4×x2
Multiply the terms with the same base by adding their exponents
−30x4+2
Add the numbers
−30x6
(−30x6−43)(6x4−x2×12x×12)=0
Multiply
More Steps

Multiply the terms
x2×12x×12
Multiply the terms with the same base by adding their exponents
x2+1×12×12
Add the numbers
x3×12×12
Multiply the terms
x3×144
Use the commutative property to reorder the terms
144x3
(−30x6−43)(6x4−144x3)=0
Change the sign
(30x6+43)(6x4−144x3)=0
Separate the equation into 2 possible cases
30x6+43=06x4−144x3=0
Solve the equation
More Steps

Evaluate
30x6+43=0
Move the constant to the right-hand side and change its sign
30x6=0−43
Removing 0 doesn't change the value,so remove it from the expression
30x6=−43
Divide both sides
3030x6=30−43
Divide the numbers
x6=30−43
Use b−a=−ba=−ba to rewrite the fraction
x6=−3043
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±6−3043
Simplify the expression
More Steps

Evaluate
6−3043
To take a root of a fraction,take the root of the numerator and denominator separately
6306−43
Simplify the radical expression
630261161+2643i
Simplify
26106387+2630643i
Rearrange the numbers
206387×105+2630643i
Rearrange the numbers
206387×105+60643×305i
x=±(206387×105+60643×305i)
Separate the equation into 2 possible cases
x=206387×105+60643×305ix=−206387×105−60643×305i
x=206387×105+60643×305ix=−206387×105−60643×305i6x4−144x3=0
Solve the equation
More Steps

Evaluate
6x4−144x3=0
Rewrite the expression
6a4+24ia3b−36a2b2−24iab3+6b4−144a3−432ia2b+432ab2+144ib3=0
Factor the expression
6x3(x−24)=0
Divide both sides
x3(x−24)=0
Separate the equation into 2 possible cases
x3=0x−24=0
The only way a power can be 0 is when the base equals 0
x=0x−24=0
Solve the equation
More Steps

Evaluate
x−24=0
Move the constant to the right-hand side and change its sign
x=0+24
Removing 0 doesn't change the value,so remove it from the expression
x=24
x=0x=24
x=206387×105+60643×305ix=−206387×105−60643×305ix=0x=24
Solution
x1=0,x2=24,x3=−206387×105−60643×305i,x4=206387×105+60643×305i
Alternative Form
x1=0,x2=24,x3≈−0.919578−0.530919i,x4≈0.919578+0.530919i
Show Solution
