Question
Simplify the expression
−12d7+12d6
Evaluate
(−6d6)(2d−2)
Remove the parentheses
−6d6(2d−2)
Apply the distributive property
−6d6×2d−(−6d6×2)
Multiply the terms
More Steps

Evaluate
−6d6×2d
Multiply the numbers
−12d6×d
Multiply the terms
More Steps

Evaluate
d6×d
Use the product rule an×am=an+m to simplify the expression
d6+1
Add the numbers
d7
−12d7
−12d7−(−6d6×2)
Multiply the numbers
−12d7−(−12d6)
Solution
−12d7+12d6
Show Solution

Factor the expression
−12d6(d−1)
Evaluate
(−6d6)(2d−2)
Remove the parentheses
−6d6(2d−2)
Factor the expression
−6d6×2(d−1)
Solution
−12d6(d−1)
Show Solution

Find the roots
d1=0,d2=1
Evaluate
(−6d6)(2d−2)
To find the roots of the expression,set the expression equal to 0
(−6d6)(2d−2)=0
Remove the parentheses
−6d6(2d−2)=0
Change the sign
6d6(2d−2)=0
Elimination the left coefficient
d6(2d−2)=0
Separate the equation into 2 possible cases
d6=02d−2=0
The only way a power can be 0 is when the base equals 0
d=02d−2=0
Solve the equation
More Steps

Evaluate
2d−2=0
Move the constant to the right-hand side and change its sign
2d=0+2
Removing 0 doesn't change the value,so remove it from the expression
2d=2
Divide both sides
22d=22
Divide the numbers
d=22
Divide the numbers
More Steps

Evaluate
22
Reduce the numbers
11
Calculate
1
d=1
d=0d=1
Solution
d1=0,d2=1
Show Solution
