Question
Simplify the expression
4231c4
Evaluate
(−67c×611)(−5c2×3c×59)
Rewrite the expression
(−67c×611)(−5)c2×3c×59
Multiply the terms
More Steps

Multiply the terms
67c×611
Multiply the terms
More Steps

Evaluate
67×611
To multiply the fractions,multiply the numerators and denominators separately
6×67×11
Multiply the numbers
6×677
Multiply the numbers
3677
3677c
(−3677c)(−5)c2×3c×59
Remove the parentheses
−3677c(−5)c2×3c×59
Rewrite the expression
3677c×5c2×3c×59
Multiply the terms
More Steps

Evaluate
3677×5×3×59
Reduce the fraction
3677×1×3×9
Any expression multiplied by 1 remains the same
3677×3×9
Multiply the terms
More Steps

Evaluate
3677×3
Reduce the numbers
1277×1
Multiply the numbers
1277
1277×9
Reduce the numbers
477×3
Multiply the numbers
477×3
Multiply the numbers
4231
4231c×c2×c
Multiply the terms with the same base by adding their exponents
4231c1+2+1
Solution
4231c4
Show Solution

Find the roots
c=0
Evaluate
(−67c×611)(−5c2×3c×59)
To find the roots of the expression,set the expression equal to 0
(−67c×611)(−5c2×3c×59)=0
Multiply the terms
More Steps

Multiply the terms
67c×611
Multiply the terms
More Steps

Evaluate
67×611
To multiply the fractions,multiply the numerators and denominators separately
6×67×11
Multiply the numbers
6×677
Multiply the numbers
3677
3677c
(−3677c)(−5c2×3c×59)=0
Remove the parentheses
−3677c(−5c2×3c×59)=0
Multiply
More Steps

Multiply the terms
−5c2×3c×59
Multiply the terms
More Steps

Evaluate
5×3×59
Reduce the fraction
1×3×9
Any expression multiplied by 1 remains the same
3×9
Multiply the numbers
27
−27c2×c
Multiply the terms with the same base by adding their exponents
−27c2+1
Add the numbers
−27c3
−3677c(−27c3)=0
Multiply the terms
More Steps

Evaluate
−3677c(−27c3)
Multiply the numbers
More Steps

Evaluate
−3677(−27)
Multiplying or dividing an even number of negative terms equals a positive
3677×27
Reduce the numbers
477×3
Multiply the numbers
477×3
Multiply the numbers
4231
4231c×c3
Multiply the terms
More Steps

Evaluate
c×c3
Use the product rule an×am=an+m to simplify the expression
c1+3
Add the numbers
c4
4231c4
4231c4=0
Rewrite the expression
c4=0
Solution
c=0
Show Solution
