Question
Simplify the expression
28a5+49a4
Evaluate
(−7a4)(−4a−7)
Remove the parentheses
−7a4(−4a−7)
Apply the distributive property
−7a4(−4a)−(−7a4×7)
Multiply the terms
More Steps

Evaluate
−7a4(−4a)
Multiply the numbers
More Steps

Evaluate
−7(−4)
Multiplying or dividing an even number of negative terms equals a positive
7×4
Multiply the numbers
28
28a4×a
Multiply the terms
More Steps

Evaluate
a4×a
Use the product rule an×am=an+m to simplify the expression
a4+1
Add the numbers
a5
28a5
28a5−(−7a4×7)
Multiply the numbers
28a5−(−49a4)
Solution
28a5+49a4
Show Solution

Find the roots
a1=−47,a2=0
Alternative Form
a1=−1.75,a2=0
Evaluate
(−7a4)(−4a−7)
To find the roots of the expression,set the expression equal to 0
(−7a4)(−4a−7)=0
Remove the parentheses
−7a4(−4a−7)=0
Change the sign
7a4(−4a−7)=0
Elimination the left coefficient
a4(−4a−7)=0
Separate the equation into 2 possible cases
a4=0−4a−7=0
The only way a power can be 0 is when the base equals 0
a=0−4a−7=0
Solve the equation
More Steps

Evaluate
−4a−7=0
Move the constant to the right-hand side and change its sign
−4a=0+7
Removing 0 doesn't change the value,so remove it from the expression
−4a=7
Change the signs on both sides of the equation
4a=−7
Divide both sides
44a=4−7
Divide the numbers
a=4−7
Use b−a=−ba=−ba to rewrite the fraction
a=−47
a=0a=−47
Solution
a1=−47,a2=0
Alternative Form
a1=−1.75,a2=0
Show Solution
