Question
Simplify the expression
294g2+210g
Evaluate
(−7g−5)(−6g×7)
Rewrite the expression
(−7g−5)(−6)g×7
Rewrite the expression
−(−7g−5)×6g×7
Multiply the terms
−(−7g−5)×42g
Multiply the first two terms
(7g+5)×42g
Multiply the terms
42g(7g+5)
Apply the distributive property
42g×7g+42g×5
Multiply the terms
More Steps

Evaluate
42g×7g
Multiply the numbers
294g×g
Multiply the terms
294g2
294g2+42g×5
Solution
294g2+210g
Show Solution

Find the roots
g1=−75,g2=0
Alternative Form
g1=−0.7˙14285˙,g2=0
Evaluate
(−7g−5)(−6g×7)
To find the roots of the expression,set the expression equal to 0
(−7g−5)(−6g×7)=0
Multiply the terms
(−7g−5)(−42g)=0
Multiply the terms
−42g(−7g−5)=0
Change the sign
42g(−7g−5)=0
Elimination the left coefficient
g(−7g−5)=0
Separate the equation into 2 possible cases
g=0−7g−5=0
Solve the equation
More Steps

Evaluate
−7g−5=0
Move the constant to the right-hand side and change its sign
−7g=0+5
Removing 0 doesn't change the value,so remove it from the expression
−7g=5
Change the signs on both sides of the equation
7g=−5
Divide both sides
77g=7−5
Divide the numbers
g=7−5
Use b−a=−ba=−ba to rewrite the fraction
g=−75
g=0g=−75
Solution
g1=−75,g2=0
Alternative Form
g1=−0.7˙14285˙,g2=0
Show Solution
