Question
Simplify the expression
315p8+4050p10
Evaluate
(−7p6−9p5×10p3)(−9p2×5)
Rewrite the expression
(−7p6−9p5×10p3)(−9)p2×5
Multiply
More Steps

Multiply the terms
9p5×10p3
Multiply the terms
90p5×p3
Multiply the terms with the same base by adding their exponents
90p5+3
Add the numbers
90p8
(−7p6−90p8)(−9)p2×5
Rewrite the expression
−(−7p6−90p8)×9p2×5
Multiply the terms
−(−7p6−90p8)×45p2
Multiply the first two terms
(7p6+90p8)×45p2
Multiply the terms
45p2(7p6+90p8)
Apply the distributive property
45p2×7p6+45p2×90p8
Multiply the terms
More Steps

Evaluate
45p2×7p6
Multiply the numbers
315p2×p6
Multiply the terms
More Steps

Evaluate
p2×p6
Use the product rule an×am=an+m to simplify the expression
p2+6
Add the numbers
p8
315p8
315p8+45p2×90p8
Solution
More Steps

Evaluate
45p2×90p8
Multiply the numbers
4050p2×p8
Multiply the terms
More Steps

Evaluate
p2×p8
Use the product rule an×am=an+m to simplify the expression
p2+8
Add the numbers
p10
4050p10
315p8+4050p10
Show Solution

Factor the expression
45p8(7+90p2)
Evaluate
(−7p6−9p5×10p3)(−9p2×5)
Multiply
More Steps

Multiply the terms
9p5×10p3
Multiply the terms
90p5×p3
Multiply the terms with the same base by adding their exponents
90p5+3
Add the numbers
90p8
(−7p6−90p8)(−9p2×5)
Multiply the terms
(−7p6−90p8)(−45p2)
Multiply the terms
−45p2(−7p6−90p8)
Factor the expression
More Steps

Evaluate
−7p6−90p8
Rewrite the expression
−p6×7−p6×90p2
Factor out −p6 from the expression
−p6(7+90p2)
−45p2(−p6)(7+90p2)
Solution
45p8(7+90p2)
Show Solution

Find the roots
p1=−3070i,p2=3070i,p3=0
Alternative Form
p1≈−0.278887i,p2≈0.278887i,p3=0
Evaluate
(−7p6−9p5×10p3)(−9p2×5)
To find the roots of the expression,set the expression equal to 0
(−7p6−9p5×10p3)(−9p2×5)=0
Multiply
More Steps

Multiply the terms
9p5×10p3
Multiply the terms
90p5×p3
Multiply the terms with the same base by adding their exponents
90p5+3
Add the numbers
90p8
(−7p6−90p8)(−9p2×5)=0
Multiply the terms
(−7p6−90p8)(−45p2)=0
Multiply the terms
−45p2(−7p6−90p8)=0
Change the sign
45p2(−7p6−90p8)=0
Elimination the left coefficient
p2(−7p6−90p8)=0
Separate the equation into 2 possible cases
p2=0−7p6−90p8=0
The only way a power can be 0 is when the base equals 0
p=0−7p6−90p8=0
Solve the equation
More Steps

Evaluate
−7p6−90p8=0
Factor the expression
−p6(7+90p2)=0
Divide both sides
p6(7+90p2)=0
Separate the equation into 2 possible cases
p6=07+90p2=0
The only way a power can be 0 is when the base equals 0
p=07+90p2=0
Solve the equation
More Steps

Evaluate
7+90p2=0
Move the constant to the right-hand side and change its sign
90p2=0−7
Removing 0 doesn't change the value,so remove it from the expression
90p2=−7
Divide both sides
9090p2=90−7
Divide the numbers
p2=90−7
Use b−a=−ba=−ba to rewrite the fraction
p2=−907
Take the root of both sides of the equation and remember to use both positive and negative roots
p=±−907
Simplify the expression
p=±3070i
Separate the equation into 2 possible cases
p=3070ip=−3070i
p=0p=3070ip=−3070i
p=0p=0p=3070ip=−3070i
Find the union
p=0p=3070ip=−3070i
Solution
p1=−3070i,p2=3070i,p3=0
Alternative Form
p1≈−0.278887i,p2≈0.278887i,p3=0
Show Solution
