Question
Simplify the expression
−j4−4j3−2j2+64j9+8j
Evaluate
(−j4−4j3−2j2)−(−2j4×8j3×4j2−8j)
Remove the parentheses
−j4−4j3−2j2−(−2j4×8j3×4j2−8j)
Multiply
More Steps

Multiply the terms
−2j4×8j3×4j2
Multiply the terms
More Steps

Evaluate
2×8×4
Multiply the terms
16×4
Multiply the numbers
64
−64j4×j3×j2
Multiply the terms with the same base by adding their exponents
−64j4+3+2
Add the numbers
−64j9
−j4−4j3−2j2−(−64j9−8j)
Solution
−j4−4j3−2j2+64j9+8j
Show Solution

Factor the expression
−j(j3+4j2+2j−64j8−8)
Evaluate
(−j4−4j3−2j2)−(−2j4×8j3×4j2−8j)
Remove the parentheses
−j4−4j3−2j2−(−2j4×8j3×4j2−8j)
Multiply
More Steps

Multiply the terms
−2j4×8j3×4j2
Multiply the terms
More Steps

Evaluate
2×8×4
Multiply the terms
16×4
Multiply the numbers
64
−64j4×j3×j2
Multiply the terms with the same base by adding their exponents
−64j4+3+2
Add the numbers
−64j9
−j4−4j3−2j2−(−64j9−8j)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−j4−4j3−2j2+64j9+8j
Rewrite the expression
−j×j3−j×4j2−j×2j+j×64j8+j×8
Solution
−j(j3+4j2+2j−64j8−8)
Show Solution
