Question
Simplify the expression
−p5−p2+45p
Evaluate
(−p4×p)−(p2−3p×15)
Multiply the terms
More Steps

Evaluate
p4×p
Use the product rule an×am=an+m to simplify the expression
p4+1
Add the numbers
p5
(−p5)−(p2−3p×15)
Remove the parentheses
−p5−(p2−3p×15)
Multiply the terms
−p5−(p2−45p)
Solution
−p5−p2+45p
Show Solution

Factor the expression
−p(p4+p−45)
Evaluate
(−p4×p)−(p2−3p×15)
Multiply the terms
More Steps

Evaluate
p4×p
Use the product rule an×am=an+m to simplify the expression
p4+1
Add the numbers
p5
(−p5)−(p2−3p×15)
Remove the parentheses
−p5−(p2−3p×15)
Multiply the terms
−p5−(p2−45p)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−p5−p2+45p
Rewrite the expression
−p×p4−p×p+p×45
Solution
−p(p4+p−45)
Show Solution

Find the roots
p1≈−2.62702,p2=0,p3≈2.552484
Evaluate
(−p4×p)−(p2−3p×15)
To find the roots of the expression,set the expression equal to 0
(−p4×p)−(p2−3p×15)=0
Multiply the terms
More Steps

Evaluate
p4×p
Use the product rule an×am=an+m to simplify the expression
p4+1
Add the numbers
p5
(−p5)−(p2−3p×15)=0
Remove the parentheses
−p5−(p2−3p×15)=0
Multiply the terms
−p5−(p2−45p)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−p5−p2+45p=0
Factor the expression
−p(p4+p−45)=0
Separate the equation into 2 possible cases
−p=0p4+p−45=0
Change the signs on both sides of the equation
p=0p4+p−45=0
Solve the equation
p=0p≈2.552484p≈−2.62702
Solution
p1≈−2.62702,p2=0,p3≈2.552484
Show Solution
