Question
Simplify the expression
−2x4+4x3
Evaluate
(−x3)(2x−4)
Use the rules for multiplication and division
−x3(2x−4)
Apply the distributive property
−x3×2x−(−x3×4)
Multiply the terms
More Steps

Evaluate
−x3×2x
Multiply the numbers
−2x3×x
Multiply the terms
More Steps

Evaluate
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
−2x4
−2x4−(−x3×4)
Use the commutative property to reorder the terms
−2x4−(−4x3)
Solution
−2x4+4x3
Show Solution

Factor the expression
−2x3(x−2)
Evaluate
(−x3)(2x−4)
Remove the parentheses
−x3(2x−4)
Factor the expression
−x3×2(x−2)
Solution
−2x3(x−2)
Show Solution

Find the roots
x1=0,x2=2
Evaluate
(−x3)(2x−4)
To find the roots of the expression,set the expression equal to 0
(−x3)(2x−4)=0
Remove the parentheses
−x3(2x−4)=0
Change the sign
x3(2x−4)=0
Separate the equation into 2 possible cases
x3=02x−4=0
The only way a power can be 0 is when the base equals 0
x=02x−4=0
Solve the equation
More Steps

Evaluate
2x−4=0
Move the constant to the right-hand side and change its sign
2x=0+4
Removing 0 doesn't change the value,so remove it from the expression
2x=4
Divide both sides
22x=24
Divide the numbers
x=24
Divide the numbers
More Steps

Evaluate
24
Reduce the numbers
12
Calculate
2
x=2
x=0x=2
Solution
x1=0,x2=2
Show Solution
