Question
Simplify the expression
−15x10+20x9
Evaluate
(−x4)×5x5(3x−4)
Remove the parentheses
−x4×5x5(3x−4)
Multiply the terms with the same base by adding their exponents
−x4+5×5(3x−4)
Add the numbers
−x9×5(3x−4)
Use the commutative property to reorder the terms
−5x9(3x−4)
Apply the distributive property
−5x9×3x−(−5x9×4)
Multiply the terms
More Steps

Evaluate
−5x9×3x
Multiply the numbers
−15x9×x
Multiply the terms
More Steps

Evaluate
x9×x
Use the product rule an×am=an+m to simplify the expression
x9+1
Add the numbers
x10
−15x10
−15x10−(−5x9×4)
Multiply the numbers
−15x10−(−20x9)
Solution
−15x10+20x9
Show Solution

Find the roots
x1=0,x2=34
Alternative Form
x1=0,x2=1.3˙
Evaluate
(−x4)(5x5)(3x−4)
To find the roots of the expression,set the expression equal to 0
(−x4)(5x5)(3x−4)=0
Remove the parentheses
−x4(5x5)(3x−4)=0
Multiply the terms
−x4×5x5(3x−4)=0
Multiply
More Steps

Multiply the terms
−x4×5x5(3x−4)
Multiply the terms with the same base by adding their exponents
−x4+5×5(3x−4)
Add the numbers
−x9×5(3x−4)
Use the commutative property to reorder the terms
−5x9(3x−4)
−5x9(3x−4)=0
Change the sign
5x9(3x−4)=0
Elimination the left coefficient
x9(3x−4)=0
Separate the equation into 2 possible cases
x9=03x−4=0
The only way a power can be 0 is when the base equals 0
x=03x−4=0
Solve the equation
More Steps

Evaluate
3x−4=0
Move the constant to the right-hand side and change its sign
3x=0+4
Removing 0 doesn't change the value,so remove it from the expression
3x=4
Divide both sides
33x=34
Divide the numbers
x=34
x=0x=34
Solution
x1=0,x2=34
Alternative Form
x1=0,x2=1.3˙
Show Solution
