Question
Simplify the expression
x3
Evaluate
(−x)3−2(−x)2(−x)×1
Multiply the terms
More Steps

Multiply the terms
2(−x)2(−x)×1
Rewrite the expression
2(−x)2(−x)
Any expression multiplied by 1 remains the same
2(−x)2(−1)x
Any expression multiplied by 1 remains the same
−2(−x)2x
Multiply the terms
More Steps

Evaluate
2(−x)2x
Multiply the terms
2x2×x
Multiply the terms
2x3
−2x3
(−x)3−(−2x3)
Rewrite the expression
(−x)3+2x3
Rewrite the expression
−x3+2x3
Collect like terms by calculating the sum or difference of their coefficients
(−1+2)x3
Solution
x3
Show Solution

Find the roots
x=0
Evaluate
(−x)3−2(−x)2(−x)×1
To find the roots of the expression,set the expression equal to 0
(−x)3−2(−x)2(−x)×1=0
Multiply the terms
More Steps

Multiply the terms
2(−x)2(−x)×1
Rewrite the expression
2(−x)2(−x)
Any expression multiplied by 1 remains the same
2(−x)2(−1)x
Any expression multiplied by 1 remains the same
−2(−x)2x
Multiply the terms
More Steps

Evaluate
2(−x)2x
Multiply the terms
2x2×x
Multiply the terms
2x3
−2x3
(−x)3−(−2x3)=0
Subtract the terms
More Steps

Simplify
(−x)3−(−2x3)
Rewrite the expression
(−x)3+2x3
Rewrite the expression
−x3+2x3
Collect like terms by calculating the sum or difference of their coefficients
(−1+2)x3
Add the numbers
x3
x3=0
Solution
x=0
Show Solution
