Question
Simplify the expression
−4−4i
Evaluate
(1×i)5(1−i)5
Any expression multiplied by 1 remains the same
i5(1−i)5
Evaluate the power
More Steps

Evaluate
i5
Evaluate
i4+1
Calculate
11×i
Calculate
i
i(1−i)5
Evaluate the power
More Steps

Evaluate
(1−i)5
Write 5 as sum
(1−i)2+3
Use am+n=am×an to expand the expression
(1−i)2(1−i)3
Multiply
More Steps

Evaluate
(1−i)2
Use (a−b)2=a2−2ab+b2 to expand the expression
12−2×1×i+i2
1 raised to any power equals to 1
1−2×1×i+i2
Multiply the terms
1−2i+i2
Evaluate the power
1−2i−1
Simplify the expression
−2i
−2i(1−i)3
Multiply
More Steps

Evaluate
(1−i)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
13−3×12×i+3×1×i2−i3
1 raised to any power equals to 1
1−3×12×i+3×1×i2−i3
Evaluate
1−3i+3×1×i2−i3
Evaluate
1−3i−3−i3
Evaluate
1−3i−3+i
Simplify the expression
−2−2i
−2i(−2−2i)
Apply the distributive property
−2i(−2)−2i(−2i)
Multiply the numbers
4i−2i(−2i)
Multiply the numbers
More Steps

Evaluate
−2i(−2i)
Multiply
−2(−2)i2
Multiply
4i2
Use i2=−1 to transform the expression
4(−1)
Calculate
−4
4i−4
Reorder the terms
−4+4i
i(−4+4i)
Apply the distributive property
i(−4)+i×4i
Multiply the numbers
−4i+i×4i
Multiply the numbers
More Steps

Evaluate
i×4i
Multiply
4i2
Use i2=−1 to transform the expression
4(−1)
Calculate
−4
−4i−4
Solution
−4−4i
Show Solution
