Question
Simplify the expression
w3−w6
Evaluate
(1×w×w2)(1−w×w2)
Remove the parentheses
1×w×w2(1−w×w2)
Multiply the terms
More Steps

Evaluate
w×w2
Use the product rule an×am=an+m to simplify the expression
w1+2
Add the numbers
w3
1×w×w2(1−w3)
Rewrite the expression
w×w2(1−w3)
Multiply the terms with the same base by adding their exponents
w1+2(1−w3)
Add the numbers
w3(1−w3)
Apply the distributive property
w3×1−w3×w3
Any expression multiplied by 1 remains the same
w3−w3×w3
Solution
More Steps

Evaluate
w3×w3
Use the product rule an×am=an+m to simplify the expression
w3+3
Add the numbers
w6
w3−w6
Show Solution

Factor the expression
w3(1−w)(w2+w+1)
Evaluate
(1×w×w2)(1−w×w2)
Remove the parentheses
1×w×w2(1−w×w2)
Multiply the terms
More Steps

Evaluate
w×w2
Use the product rule an×am=an+m to simplify the expression
w1+2
Add the numbers
w3
1×w×w2(1−w3)
Multiply the terms
More Steps

Multiply the terms
1×w×w2
Rewrite the expression
w×w2
Use the product rule an×am=an+m to simplify the expression
w1+2
Add the numbers
w3
w3(1−w3)
Solution
More Steps

Evaluate
1−w3
Calculate
w2+w+1−w3−w2−w
Rewrite the expression
w2+w+1−w×w2−w×w−w
Factor out −w from the expression
w2+w+1−w(w2+w+1)
Factor out w2+w+1 from the expression
(1−w)(w2+w+1)
w3(1−w)(w2+w+1)
Show Solution

Find the roots
w1=0,w2=1
Evaluate
(1×w×w2)(1−w×w2)
To find the roots of the expression,set the expression equal to 0
(1×w×w2)(1−w×w2)=0
Multiply the terms
More Steps

Multiply the terms
1×w×w2
Rewrite the expression
w×w2
Use the product rule an×am=an+m to simplify the expression
w1+2
Add the numbers
w3
w3(1−w×w2)=0
Multiply the terms
More Steps

Evaluate
w×w2
Use the product rule an×am=an+m to simplify the expression
w1+2
Add the numbers
w3
w3(1−w3)=0
Separate the equation into 2 possible cases
w3=01−w3=0
The only way a power can be 0 is when the base equals 0
w=01−w3=0
Solve the equation
More Steps

Evaluate
1−w3=0
Move the constant to the right-hand side and change its sign
−w3=0−1
Removing 0 doesn't change the value,so remove it from the expression
−w3=−1
Change the signs on both sides of the equation
w3=1
Take the 3-th root on both sides of the equation
3w3=31
Calculate
w=31
Simplify the root
w=1
w=0w=1
Solution
w1=0,w2=1
Show Solution
