Question
Solve the equation
x=310
Alternative Form
x=3.3˙
Evaluate
(x−21)×2=(3×x×2x)
Find the domain
More Steps

Evaluate
{x−2=0x×2=0
Calculate
More Steps

Evaluate
x−2=0
Move the constant to the right side
x=0+2
Removing 0 doesn't change the value,so remove it from the expression
x=2
{x=2x×2=0
Calculate
More Steps

Evaluate
x×2=0
Use the commutative property to reorder the terms
2x=0
Rewrite the expression
x=0
{x=2x=0
Find the intersection
x∈(−∞,0)∪(0,2)∪(2,+∞)
(x−21)×2=(3×x×2x),x∈(−∞,0)∪(0,2)∪(2,+∞)
Remove the parentheses
(x−21)×2=3×x×2x
Simplify
More Steps

Evaluate
(x−21)×2
Remove the unnecessary parentheses
x−21×2
Multiply the terms
x−22
x−22=3×x×2x
Simplify
More Steps

Evaluate
3×x×2x
Reduce the fraction
3×21
Multiply the numbers
23
x−22=23
Rewrite the expression
x−2=32×2
Divide the terms
x−2=34
Move the constant to the right side
x=34+2
Add the numbers
More Steps

Evaluate
34+2
Reduce fractions to a common denominator
34+32×3
Write all numerators above the common denominator
34+2×3
Multiply the numbers
34+6
Add the numbers
310
x=310
Check if the solution is in the defined range
x=310,x∈(−∞,0)∪(0,2)∪(2,+∞)
Solution
x=310
Alternative Form
x=3.3˙
Show Solution
