Question
Simplify the expression
161a2+41b2+1−41ab+21a−b
Evaluate
(41a−21b+1)2
Use (a+b+c)2=a2+b2+c2+2ab+2ac+2bc to expand the expression
(41a)2+(−21b)2+12+2×41a(−21b)+2×41a×1+2(−21b)×1
Calculate
More Steps

Evaluate
(41a)2
To raise a product to a power,raise each factor to that power
(41)2a2
Evaluate the power
More Steps

Evaluate
(41)2
To raise a fraction to a power,raise the numerator and denominator to that power
4212
Evaluate the power
421
Evaluate the power
161
161a2
161a2+(−21b)2+12+2×41a(−21b)+2×41a×1+2(−21b)×1
Calculate
More Steps

Evaluate
(−21b)2
Determine the sign
(21b)2
To raise a product to a power,raise each factor to that power
(21)2b2
Evaluate the power
More Steps

Evaluate
(21)2
To raise a fraction to a power,raise the numerator and denominator to that power
2212
Evaluate the power
221
Evaluate the power
41
41b2
161a2+41b2+12+2×41a(−21b)+2×41a×1+2(−21b)×1
Calculate
161a2+41b2+1+2×41a(−21b)+2×41a×1+2(−21b)×1
Calculate
More Steps

Evaluate
2×41a(−21b)
Multiply the numbers
More Steps

Evaluate
2×41
Reduce the numbers
1×21
Multiply the numbers
21
21a(−21b)
Multiply the numbers
More Steps

Evaluate
21(−21)
Multiplying or dividing an odd number of negative terms equals a negative
−21×21
To multiply the fractions,multiply the numerators and denominators separately
−2×21
Multiply the numbers
−41
−41ab
161a2+41b2+1−41ab+2×41a×1+2(−21b)×1
Calculate
More Steps

Evaluate
2×41a×1
Multiply the numbers
More Steps

Evaluate
2×41
Reduce the numbers
1×21
Multiply the numbers
21
21a×1
Any expression multiplied by 1 remains the same
21a
161a2+41b2+1−41ab+21a+2(−21b)×1
Solution
More Steps

Evaluate
2(−21b)×1
Multiply the numbers
More Steps

Evaluate
2(−21)
Multiplying or dividing an odd number of negative terms equals a negative
−2×21
Reduce the numbers
−1×1
Simplify
−1
−b×1
Any expression multiplied by 1 remains the same
−b
161a2+41b2+1−41ab+21a−b
Show Solution

Factor the expression
161(a−2b+4)2
Evaluate
(41a−21b+1)2
Evaluate
161a2+41b2+1−41ab+21a−b
Evaluate
161a2−41ab+21a+41b2−b+1
Rewrite the expression
161a2−161×4ab+161×8a+161×4b2−161×16b+161×16
Factor out 161 from the expression
161(a2−4ab+8a+4b2−16b+16)
Factor the expression
More Steps

Evaluate
a2−4ab+8a+4b2−16b+16
Calculate
a2−2ab+4a−2ba+4b2−8b+4a−8b+16
Rewrite the expression
a×a−a×2b+a×4−2ba+2b×2b−2b×4+4a−4×2b+4×4
Factor out a from the expression
a(a−2b+4)−2ba+2b×2b−2b×4+4a−4×2b+4×4
Factor out −2b from the expression
a(a−2b+4)−2b(a−2b+4)+4a−4×2b+4×4
Factor out 4 from the expression
a(a−2b+4)−2b(a−2b+4)+4(a−2b+4)
Factor out a−2b+4 from the expression
(a−2b+4)(a−2b+4)
161(a−2b+4)(a−2b+4)
Solution
161(a−2b+4)2
Show Solution
