Question
Simplify the expression
26+52i
Evaluate
(1−3i)(1−i)(1×i)×13i
Remove the parentheses
(1−3i)(1−i)×1×i×13i
Rewrite the expression
(1−3i)(1−i)i×13i
Multiply the numbers
More Steps

Evaluate
i×13i
Multiply
13i2
Use i2=−1 to transform the expression
13(−1)
Calculate
−13
(1−3i)(1−i)(−13)
Multiply the first two terms
More Steps

Evaluate
(1−3i)(1−i)
Apply the distributive property
1−i−3i−3i(−i)
Multiply the numbers
More Steps

Evaluate
−3i(−i)
Multiply
−3(−1)i2
Multiply
3i2
Use i2=−1 to transform the expression
3(−1)
Calculate
−3
1−i−3i−3
Calculate
−2−i−3i
Calculate
More Steps

Evaluate
−i−3i
Collect like terms by calculating the sum or difference of their coefficients
(−1−3)i
Calculate
−4i
−2−4i
(−2−4i)(−13)
Apply the distributive property
−2(−13)−4i(−13)
Multiply the numbers
More Steps

Evaluate
−2(−13)
Multiplying or dividing an even number of negative terms equals a positive
2×13
Multiply the numbers
26
26−4i(−13)
Solution
26+52i
Show Solution
