Question
Simplify the expression
241−14i
Evaluate
(1−7i)2−(17i)2
Evaluate the power
More Steps

Evaluate
(1−7i)2
Use (a−b)2=a2−2ab+b2 to expand the expression
12−2×1×7i+(7i)2
1 raised to any power equals to 1
1−2×1×7i+(7i)2
Multiply the terms
More Steps

Multiply the terms
2×1×7i
Rewrite the expression
2×7i
Multiply the numbers
14i
1−14i+(7i)2
Evaluate the power
More Steps

Evaluate
(7i)2
Evaluate
72i2
Evaluate the power
49i2
Evaluate the power
−49
1−14i−49
Simplify the expression
−48−14i
−48−14i−(17i)2
Evaluate the power
More Steps

Evaluate
(17i)2
Evaluate
172i2
Evaluate the power
289i2
Evaluate the power
−289
−48−14i−(−289)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−48−14i+289
Solution
241−14i
Show Solution
