Question
Solve the equation
t1=2171−33169,t2=2171+33169
Alternative Form
t1≈1.059192,t2≈169.940808
Evaluate
t10−(t−180100)=10
Find the domain
More Steps

Evaluate
{t=0t−180=0
Calculate
More Steps

Evaluate
t−180=0
Move the constant to the right side
t=0+180
Removing 0 doesn't change the value,so remove it from the expression
t=180
{t=0t=180
Find the intersection
t∈(−∞,0)∪(0,180)∪(180,+∞)
t10−(t−180100)=10,t∈(−∞,0)∪(0,180)∪(180,+∞)
Remove the unnecessary parentheses
t10−t−180100=10
Multiply both sides of the equation by LCD
(t10−t−180100)t(t−180)=10t(t−180)
Simplify the equation
More Steps

Evaluate
(t10−t−180100)t(t−180)
Apply the distributive property
t10×t(t−180)−t−180100×t(t−180)
Simplify
10(t−180)−100t
Expand the expression
More Steps

Calculate
10(t−180)
Apply the distributive property
10t−10×180
Multiply the numbers
10t−1800
10t−1800−100t
Subtract the terms
More Steps

Evaluate
10t−100t
Collect like terms by calculating the sum or difference of their coefficients
(10−100)t
Subtract the numbers
−90t
−90t−1800
−90t−1800=10t(t−180)
Simplify the equation
More Steps

Evaluate
10t(t−180)
Apply the distributive property
10t×t−10t×180
Multiply the terms
10t2−10t×180
Multiply the numbers
10t2−1800t
−90t−1800=10t2−1800t
Move the expression to the left side
−90t−1800−(10t2−1800t)=0
Subtract the terms
More Steps

Evaluate
−90t−1800−(10t2−1800t)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−90t−1800−10t2+1800t
Add the terms
More Steps

Evaluate
−90t+1800t
Collect like terms by calculating the sum or difference of their coefficients
(−90+1800)t
Add the numbers
1710t
1710t−1800−10t2
1710t−1800−10t2=0
Rewrite in standard form
−10t2+1710t−1800=0
Multiply both sides
10t2−1710t+1800=0
Substitute a=10,b=−1710 and c=1800 into the quadratic formula t=2a−b±b2−4ac
t=2×101710±(−1710)2−4×10×1800
Simplify the expression
t=201710±(−1710)2−4×10×1800
Simplify the expression
More Steps

Evaluate
(−1710)2−4×10×1800
Multiply the numbers
More Steps

Multiply the terms
4×10×1800
Multiply the terms
40×1800
Multiply the numbers
72000
(−1710)2−72000
Calculate
17102−72000
t=201710±17102−72000
Simplify the radical expression
More Steps

Evaluate
17102−72000
Add the numbers
2852100
Write the expression as a product where the root of one of the factors can be evaluated
900×3169
Write the number in exponential form with the base of 30
302×3169
The root of a product is equal to the product of the roots of each factor
302×3169
Reduce the index of the radical and exponent with 2
303169
t=201710±303169
Separate the equation into 2 possible cases
t=201710+303169t=201710−303169
Simplify the expression
More Steps

Evaluate
t=201710+303169
Divide the terms
More Steps

Evaluate
201710+303169
Rewrite the expression
2010(171+33169)
Cancel out the common factor 10
2171+33169
t=2171+33169
t=2171+33169t=201710−303169
Simplify the expression
More Steps

Evaluate
t=201710−303169
Divide the terms
More Steps

Evaluate
201710−303169
Rewrite the expression
2010(171−33169)
Cancel out the common factor 10
2171−33169
t=2171−33169
t=2171+33169t=2171−33169
Check if the solution is in the defined range
t=2171+33169t=2171−33169,t∈(−∞,0)∪(0,180)∪(180,+∞)
Find the intersection of the solution and the defined range
t=2171+33169t=2171−33169
Solution
t1=2171−33169,t2=2171+33169
Alternative Form
t1≈1.059192,t2≈169.940808
Show Solution
