Question
Simplify the expression
1000n−100n2
Evaluate
(10−n)×10×10n
Multiply the terms
(10−n)×100n
Multiply the terms
100n(10−n)
Apply the distributive property
100n×10−100n×n
Multiply the numbers
1000n−100n×n
Solution
1000n−100n2
Show Solution

Find the roots
n1=0,n2=10
Evaluate
(10−n)×10(10n)
To find the roots of the expression,set the expression equal to 0
(10−n)×10(10n)=0
Multiply the terms
(10−n)×10×10n=0
Multiply the terms
More Steps

Multiply the terms
(10−n)×10×10n
Multiply the terms
(10−n)×100n
Multiply the terms
100n(10−n)
100n(10−n)=0
Elimination the left coefficient
n(10−n)=0
Separate the equation into 2 possible cases
n=010−n=0
Solve the equation
More Steps

Evaluate
10−n=0
Move the constant to the right-hand side and change its sign
−n=0−10
Removing 0 doesn't change the value,so remove it from the expression
−n=−10
Change the signs on both sides of the equation
n=10
n=0n=10
Solution
n1=0,n2=10
Show Solution
