Question
Simplify the expression
240x11−48x9−168x8
Evaluate
(10x4−2x2−7x)(6x4×4x2×x)
Remove the parentheses
(10x4−2x2−7x)×6x4×4x2×x
Multiply the terms
(10x4−2x2−7x)×24x4×x2×x
Multiply the terms with the same base by adding their exponents
(10x4−2x2−7x)×24x4+2+1
Add the numbers
(10x4−2x2−7x)×24x7
Multiply the terms
24x7(10x4−2x2−7x)
Apply the distributive property
24x7×10x4−24x7×2x2−24x7×7x
Multiply the terms
More Steps

Evaluate
24x7×10x4
Multiply the numbers
240x7×x4
Multiply the terms
More Steps

Evaluate
x7×x4
Use the product rule an×am=an+m to simplify the expression
x7+4
Add the numbers
x11
240x11
240x11−24x7×2x2−24x7×7x
Multiply the terms
More Steps

Evaluate
24x7×2x2
Multiply the numbers
48x7×x2
Multiply the terms
More Steps

Evaluate
x7×x2
Use the product rule an×am=an+m to simplify the expression
x7+2
Add the numbers
x9
48x9
240x11−48x9−24x7×7x
Solution
More Steps

Evaluate
24x7×7x
Multiply the numbers
168x7×x
Multiply the terms
More Steps

Evaluate
x7×x
Use the product rule an×am=an+m to simplify the expression
x7+1
Add the numbers
x8
168x8
240x11−48x9−168x8
Show Solution

Factor the expression
24x8(10x3−2x−7)
Evaluate
(10x4−2x2−7x)(6x4×4x2×x)
Remove the parentheses
(10x4−2x2−7x)×6x4×4x2×x
Multiply
More Steps

Multiply the terms
6x4×4x2×x
Multiply the terms
24x4×x2×x
Multiply the terms with the same base by adding their exponents
24x4+2+1
Add the numbers
24x7
(10x4−2x2−7x)×24x7
Multiply the terms
24x7(10x4−2x2−7x)
Factor the expression
More Steps

Evaluate
10x4−2x2−7x
Rewrite the expression
x×10x3−x×2x−x×7
Factor out x from the expression
x(10x3−2x−7)
24x7×x(10x3−2x−7)
Solution
24x8(10x3−2x−7)
Show Solution

Find the roots
x1=0,x2≈0.962823
Evaluate
(10x4−2x2−7x)(6x4×4x2×x)
To find the roots of the expression,set the expression equal to 0
(10x4−2x2−7x)(6x4×4x2×x)=0
Multiply
More Steps

Multiply the terms
6x4×4x2×x
Multiply the terms
24x4×x2×x
Multiply the terms with the same base by adding their exponents
24x4+2+1
Add the numbers
24x7
(10x4−2x2−7x)×24x7=0
Multiply the terms
24x7(10x4−2x2−7x)=0
Elimination the left coefficient
x7(10x4−2x2−7x)=0
Separate the equation into 2 possible cases
x7=010x4−2x2−7x=0
The only way a power can be 0 is when the base equals 0
x=010x4−2x2−7x=0
Solve the equation
More Steps

Evaluate
10x4−2x2−7x=0
Factor the expression
x(10x3−2x−7)=0
Separate the equation into 2 possible cases
x=010x3−2x−7=0
Solve the equation
x=0x≈0.962823
x=0x=0x≈0.962823
Find the union
x=0x≈0.962823
Solution
x1=0,x2≈0.962823
Show Solution
