Question
Simplify the expression
2530x2−1150x3
Evaluate
(11−5x)×115x×2x
Multiply the terms
(11−5x)×230x×x
Multiply the terms
(11−5x)×230x2
Multiply the terms
230x2(11−5x)
Apply the distributive property
230x2×11−230x2×5x
Multiply the numbers
2530x2−230x2×5x
Solution
More Steps

Evaluate
230x2×5x
Multiply the numbers
1150x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
1150x3
2530x2−1150x3
Show Solution

Find the roots
x1=0,x2=511
Alternative Form
x1=0,x2=2.2
Evaluate
(11−5x)(115x)(2x)
To find the roots of the expression,set the expression equal to 0
(11−5x)(115x)(2x)=0
Multiply the terms
(11−5x)×115x(2x)=0
Multiply the terms
(11−5x)×115x×2x=0
Multiply the terms
More Steps

Multiply the terms
(11−5x)×115x×2x
Multiply the terms
(11−5x)×230x×x
Multiply the terms
(11−5x)×230x2
Multiply the terms
230x2(11−5x)
230x2(11−5x)=0
Elimination the left coefficient
x2(11−5x)=0
Separate the equation into 2 possible cases
x2=011−5x=0
The only way a power can be 0 is when the base equals 0
x=011−5x=0
Solve the equation
More Steps

Evaluate
11−5x=0
Move the constant to the right-hand side and change its sign
−5x=0−11
Removing 0 doesn't change the value,so remove it from the expression
−5x=−11
Change the signs on both sides of the equation
5x=11
Divide both sides
55x=511
Divide the numbers
x=511
x=0x=511
Solution
x1=0,x2=511
Alternative Form
x1=0,x2=2.2
Show Solution
