Question
(12s4−6s2×4s)(6s4−4s2×7)−(4s4×s2×12)
Simplify the expression
72s8−384s6−144s7+672s5
Evaluate
(12s4−6s2×4s)(6s4−4s2×7)−(4s4×s2×12)
Multiply
More Steps

Multiply the terms
6s2×4s
Multiply the terms
24s2×s
Multiply the terms with the same base by adding their exponents
24s2+1
Add the numbers
24s3
(12s4−24s3)(6s4−4s2×7)−(4s4×s2×12)
Multiply the terms
(12s4−24s3)(6s4−28s2)−(4s4×s2×12)
Multiply
More Steps

Multiply the terms
4s4×s2×12
Multiply the terms
48s4×s2
Multiply the terms with the same base by adding their exponents
48s4+2
Add the numbers
48s6
(12s4−24s3)(6s4−28s2)−48s6
Expand the expression
More Steps

Calculate
(12s4−24s3)(6s4−28s2)
Apply the distributive property
12s4×6s4−12s4×28s2−24s3×6s4−(−24s3×28s2)
Multiply the terms
More Steps

Evaluate
12s4×6s4
Multiply the numbers
72s4×s4
Multiply the terms
72s8
72s8−12s4×28s2−24s3×6s4−(−24s3×28s2)
Multiply the terms
More Steps

Evaluate
12s4×28s2
Multiply the numbers
336s4×s2
Multiply the terms
336s6
72s8−336s6−24s3×6s4−(−24s3×28s2)
Multiply the terms
More Steps

Evaluate
−24s3×6s4
Multiply the numbers
−144s3×s4
Multiply the terms
−144s7
72s8−336s6−144s7−(−24s3×28s2)
Multiply the terms
More Steps

Evaluate
−24s3×28s2
Multiply the numbers
−672s3×s2
Multiply the terms
−672s5
72s8−336s6−144s7−(−672s5)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
72s8−336s6−144s7+672s5
72s8−336s6−144s7+672s5−48s6
Solution
More Steps

Evaluate
−336s6−48s6
Collect like terms by calculating the sum or difference of their coefficients
(−336−48)s6
Subtract the numbers
−384s6
72s8−384s6−144s7+672s5
Show Solution

Factor the expression
24s5(3s3−16s−6s2+28)
Evaluate
(12s4−6s2×4s)(6s4−4s2×7)−(4s4×s2×12)
Multiply
More Steps

Multiply the terms
6s2×4s
Multiply the terms
24s2×s
Multiply the terms with the same base by adding their exponents
24s2+1
Add the numbers
24s3
(12s4−24s3)(6s4−4s2×7)−(4s4×s2×12)
Multiply the terms
(12s4−24s3)(6s4−28s2)−(4s4×s2×12)
Multiply
More Steps

Multiply the terms
4s4×s2×12
Multiply the terms
48s4×s2
Multiply the terms with the same base by adding their exponents
48s4+2
Add the numbers
48s6
(12s4−24s3)(6s4−28s2)−48s6
Rewrite the expression
24s5(s−2)(3s2−14)−24s5×2s
Factor out 24s5 from the expression
24s5((s−2)(3s2−14)−2s)
Solution
24s5(3s3−16s−6s2+28)
Show Solution

Find the roots
s1≈−2.240288,s2=0,s3≈1.546664,s4≈2.693623
Evaluate
(12s4−6s2×4s)(6s4−4s2×7)−(4s4×s2×12)
To find the roots of the expression,set the expression equal to 0
(12s4−6s2×4s)(6s4−4s2×7)−(4s4×s2×12)=0
Multiply
More Steps

Multiply the terms
6s2×4s
Multiply the terms
24s2×s
Multiply the terms with the same base by adding their exponents
24s2+1
Add the numbers
24s3
(12s4−24s3)(6s4−4s2×7)−(4s4×s2×12)=0
Multiply the terms
(12s4−24s3)(6s4−28s2)−(4s4×s2×12)=0
Multiply
More Steps

Multiply the terms
4s4×s2×12
Multiply the terms
48s4×s2
Multiply the terms with the same base by adding their exponents
48s4+2
Add the numbers
48s6
(12s4−24s3)(6s4−28s2)−48s6=0
Calculate
More Steps

Evaluate
(12s4−24s3)(6s4−28s2)−48s6
Expand the expression
More Steps

Calculate
(12s4−24s3)(6s4−28s2)
Apply the distributive property
12s4×6s4−12s4×28s2−24s3×6s4−(−24s3×28s2)
Multiply the terms
72s8−12s4×28s2−24s3×6s4−(−24s3×28s2)
Multiply the terms
72s8−336s6−24s3×6s4−(−24s3×28s2)
Multiply the terms
72s8−336s6−144s7−(−24s3×28s2)
Multiply the terms
72s8−336s6−144s7−(−672s5)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
72s8−336s6−144s7+672s5
72s8−336s6−144s7+672s5−48s6
Subtract the terms
More Steps

Evaluate
−336s6−48s6
Collect like terms by calculating the sum or difference of their coefficients
(−336−48)s6
Subtract the numbers
−384s6
72s8−384s6−144s7+672s5
72s8−384s6−144s7+672s5=0
Factor the expression
24s5(3s3−16s−6s2+28)=0
Divide both sides
s5(3s3−16s−6s2+28)=0
Separate the equation into 2 possible cases
s5=03s3−16s−6s2+28=0
The only way a power can be 0 is when the base equals 0
s=03s3−16s−6s2+28=0
Solve the equation
s=0s≈−2.240288s≈1.546664s≈2.693623
Solution
s1≈−2.240288,s2=0,s3≈1.546664,s4≈2.693623
Show Solution
