Question
Simplify the expression
39x3−624x5−10+160x21980x6−1320x5
Evaluate
(12x2×11x2)÷(3x2×13x−10)(15x2−10x)÷(1−16x2)
Multiply
More Steps

Multiply the terms
12x2×11x2
Multiply the terms
132x2×x2
Multiply the terms with the same base by adding their exponents
132x2+2
Add the numbers
132x4
132x4÷(3x2×13x−10)(15x2−10x)÷(1−16x2)
Multiply
More Steps

Multiply the terms
3x2×13x
Multiply the terms
39x2×x
Multiply the terms with the same base by adding their exponents
39x2+1
Add the numbers
39x3
132x4÷(39x3−10)(15x2−10x)÷(1−16x2)
Rewrite the expression
39x3−10132x4×(15x2−10x)÷(1−16x2)
Multiply the terms
39x3−10132x4(15x2−10x)÷(1−16x2)
Multiply by the reciprocal
39x3−10132x4(15x2−10x)×1−16x21
Multiply the terms
(39x3−10)(1−16x2)132x4(15x2−10x)
Multiply the terms
More Steps

Evaluate
132x4(15x2−10x)
Apply the distributive property
132x4×15x2−132x4×10x
Multiply the terms
More Steps

Evaluate
132x4×15x2
Multiply the numbers
1980x4×x2
Multiply the terms
1980x6
1980x6−132x4×10x
Multiply the terms
More Steps

Evaluate
132x4×10x
Multiply the numbers
1320x4×x
Multiply the terms
1320x5
1980x6−1320x5
(39x3−10)(1−16x2)1980x6−1320x5
Solution
More Steps

Evaluate
(39x3−10)(1−16x2)
Apply the distributive property
39x3×1−39x3×16x2−10×1−(−10×16x2)
Any expression multiplied by 1 remains the same
39x3−39x3×16x2−10×1−(−10×16x2)
Multiply the terms
More Steps

Evaluate
39x3×16x2
Multiply the numbers
624x3×x2
Multiply the terms
624x5
39x3−624x5−10×1−(−10×16x2)
Any expression multiplied by 1 remains the same
39x3−624x5−10−(−10×16x2)
Multiply the numbers
39x3−624x5−10−(−160x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
39x3−624x5−10+160x2
39x3−624x5−10+160x21980x6−1320x5
Show Solution

Find the excluded values
x=39315210,x=41,x=−41
Evaluate
(12x2×11x2)÷(3x2×13x−10)(15x2−10x)÷(1−16x2)
To find the excluded values,set the denominators equal to 0
3x2×13x−10=01−16x2=0
Solve the equations
More Steps

Evaluate
3x2×13x−10=0
Multiply
More Steps

Evaluate
3x2×13x
Multiply the terms
39x2×x
Multiply the terms with the same base by adding their exponents
39x2+1
Add the numbers
39x3
39x3−10=0
Move the constant to the right-hand side and change its sign
39x3=0+10
Removing 0 doesn't change the value,so remove it from the expression
39x3=10
Divide both sides
3939x3=3910
Divide the numbers
x3=3910
Take the 3-th root on both sides of the equation
3x3=33910
Calculate
x=33910
Simplify the root
More Steps

Evaluate
33910
To take a root of a fraction,take the root of the numerator and denominator separately
339310
Multiply by the Conjugate
339×3392310×3392
Simplify
339×3392310×31521
Multiply the numbers
339×3392315210
Multiply the numbers
39315210
x=39315210
x=393152101−16x2=0
Solve the equations
More Steps

Evaluate
1−16x2=0
Move the constant to the right-hand side and change its sign
−16x2=0−1
Removing 0 doesn't change the value,so remove it from the expression
−16x2=−1
Change the signs on both sides of the equation
16x2=1
Divide both sides
1616x2=161
Divide the numbers
x2=161
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±161
Simplify the expression
More Steps

Evaluate
161
To take a root of a fraction,take the root of the numerator and denominator separately
161
Simplify the radical expression
161
Simplify the radical expression
41
x=±41
Separate the equation into 2 possible cases
x=41x=−41
x=39315210x=41x=−41
Solution
x=39315210,x=41,x=−41
Show Solution

Find the roots
x1=0,x2=32
Alternative Form
x1=0,x2=0.6˙
Evaluate
(12x2×11x2)÷(3x2×13x−10)(15x2−10x)÷(1−16x2)
To find the roots of the expression,set the expression equal to 0
(12x2×11x2)÷(3x2×13x−10)(15x2−10x)÷(1−16x2)=0
Find the domain
More Steps

Evaluate
{3x2×13x−10=01−16x2=0
Calculate
More Steps

Evaluate
3x2×13x−10=0
Multiply
39x3−10=0
Move the constant to the right side
39x3=10
Divide both sides
3939x3=3910
Divide the numbers
x3=3910
Take the 3-th root on both sides of the equation
3x3=33910
Calculate
x=33910
Simplify the root
x=39315210
{x=393152101−16x2=0
Calculate
More Steps

Evaluate
1−16x2=0
Rewrite the expression
−16x2=−1
Change the signs on both sides of the equation
16x2=1
Divide both sides
1616x2=161
Divide the numbers
x2=161
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±161
Simplify the expression
x=±41
Separate the inequality into 2 possible cases
{x=41x=−41
Find the intersection
x∈(−∞,−41)∪(−41,41)∪(41,+∞)
{x=39315210x∈(−∞,−41)∪(−41,41)∪(41,+∞)
Find the intersection
x∈(−∞,−41)∪(−41,41)∪(41,39315210)∪(39315210,+∞)
(12x2×11x2)÷(3x2×13x−10)(15x2−10x)÷(1−16x2)=0,x∈(−∞,−41)∪(−41,41)∪(41,39315210)∪(39315210,+∞)
Calculate
(12x2×11x2)÷(3x2×13x−10)(15x2−10x)÷(1−16x2)=0
Multiply
More Steps

Multiply the terms
12x2×11x2
Multiply the terms
132x2×x2
Multiply the terms with the same base by adding their exponents
132x2+2
Add the numbers
132x4
132x4÷(3x2×13x−10)(15x2−10x)÷(1−16x2)=0
Multiply
More Steps

Multiply the terms
3x2×13x
Multiply the terms
39x2×x
Multiply the terms with the same base by adding their exponents
39x2+1
Add the numbers
39x3
132x4÷(39x3−10)(15x2−10x)÷(1−16x2)=0
Rewrite the expression
39x3−10132x4×(15x2−10x)÷(1−16x2)=0
Multiply the terms
39x3−10132x4(15x2−10x)÷(1−16x2)=0
Divide the terms
More Steps

Evaluate
39x3−10132x4(15x2−10x)÷(1−16x2)
Multiply by the reciprocal
39x3−10132x4(15x2−10x)×1−16x21
Multiply the terms
(39x3−10)(1−16x2)132x4(15x2−10x)
(39x3−10)(1−16x2)132x4(15x2−10x)=0
Cross multiply
132x4(15x2−10x)=(39x3−10)(1−16x2)×0
Simplify the equation
132x4(15x2−10x)=0
Elimination the left coefficient
x4(15x2−10x)=0
Separate the equation into 2 possible cases
x4=015x2−10x=0
The only way a power can be 0 is when the base equals 0
x=015x2−10x=0
Solve the equation
More Steps

Evaluate
15x2−10x=0
Factor the expression
More Steps

Evaluate
15x2−10x
Rewrite the expression
5x×3x−5x×2
Factor out 5x from the expression
5x(3x−2)
5x(3x−2)=0
When the product of factors equals 0,at least one factor is 0
5x=03x−2=0
Solve the equation for x
x=03x−2=0
Solve the equation for x
More Steps

Evaluate
3x−2=0
Move the constant to the right-hand side and change its sign
3x=0+2
Removing 0 doesn't change the value,so remove it from the expression
3x=2
Divide both sides
33x=32
Divide the numbers
x=32
x=0x=32
x=0x=0x=32
Find the union
x=0x=32
Check if the solution is in the defined range
x=0x=32,x∈(−∞,−41)∪(−41,41)∪(41,39315210)∪(39315210,+∞)
Find the intersection of the solution and the defined range
x=0x=32
Solution
x1=0,x2=32
Alternative Form
x1=0,x2=0.6˙
Show Solution
