Question
Simplify the expression
1536
Evaluate
3x612x2×48x4×8
Multiply
More Steps

Evaluate
12x2×48x4×8
Multiply the terms
More Steps

Evaluate
12×48×8
Multiply the terms
576×8
Multiply the numbers
4608
4608x2×x4
Multiply the terms with the same base by adding their exponents
4608x2+4
Add the numbers
4608x6
3x64608x6
Reduce the fraction
x61536x6
Solution
1536
Show Solution

Find the excluded values
x=0
Evaluate
3x612x2×48x4×8
To find the excluded values,set the denominators equal to 0
3x6=0
Rewrite the expression
x6=0
Solution
x=0
Show Solution

Find the roots
x∈∅
Evaluate
3x612x2×48x4×8
To find the roots of the expression,set the expression equal to 0
3x612x2×48x4×8=0
Find the domain
More Steps

Evaluate
3x6=0
Rewrite the expression
x6=0
The only way a power can not be 0 is when the base not equals 0
x=0
3x612x2×48x4×8=0,x=0
Calculate
3x612x2×48x4×8=0
Multiply
More Steps

Multiply the terms
12x2×48x4×8
Multiply the terms
More Steps

Evaluate
12×48×8
Multiply the terms
576×8
Multiply the numbers
4608
4608x2×x4
Multiply the terms with the same base by adding their exponents
4608x2+4
Add the numbers
4608x6
3x64608x6=0
Divide the terms
More Steps

Evaluate
3x64608x6
Reduce the fraction
34608
Reduce the numbers
11536
Calculate
1536
1536=0
Solution
x∈∅
Show Solution
