Question
Simplify the expression
−36x2+57x−50
Evaluate
(12x2−19x)×2−5(12x2−19x)−50
Multiply the terms
2(12x2−19x)−5(12x2−19x)−50
Expand the expression
More Steps

Calculate
2(12x2−19x)
Apply the distributive property
2×12x2−2×19x
Multiply the numbers
24x2−2×19x
Multiply the numbers
24x2−38x
24x2−38x−5(12x2−19x)−50
Expand the expression
More Steps

Calculate
−5(12x2−19x)
Apply the distributive property
−5×12x2−(−5×19x)
Multiply the numbers
−60x2−(−5×19x)
Multiply the numbers
−60x2−(−95x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−60x2+95x
24x2−38x−60x2+95x−50
Subtract the terms
More Steps

Evaluate
24x2−60x2
Collect like terms by calculating the sum or difference of their coefficients
(24−60)x2
Subtract the numbers
−36x2
−36x2−38x+95x−50
Solution
More Steps

Evaluate
−38x+95x
Collect like terms by calculating the sum or difference of their coefficients
(−38+95)x
Add the numbers
57x
−36x2+57x−50
Show Solution

Find the roots
x1=2419−24439i,x2=2419+24439i
Alternative Form
x1≈0.7916˙−0.873014i,x2≈0.7916˙+0.873014i
Evaluate
(12x2−19x)×2−5(12x2−19x)−50
To find the roots of the expression,set the expression equal to 0
(12x2−19x)×2−5(12x2−19x)−50=0
Multiply the terms
2(12x2−19x)−5(12x2−19x)−50=0
Subtract the terms
More Steps

Simplify
2(12x2−19x)−5(12x2−19x)
Expand the expression
More Steps

Calculate
2(12x2−19x)
Apply the distributive property
2×12x2−2×19x
Multiply the numbers
24x2−2×19x
Multiply the numbers
24x2−38x
24x2−38x−5(12x2−19x)
Expand the expression
More Steps

Calculate
−5(12x2−19x)
Apply the distributive property
−5×12x2−(−5×19x)
Multiply the numbers
−60x2−(−5×19x)
Multiply the numbers
−60x2−(−95x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−60x2+95x
24x2−38x−60x2+95x
Subtract the terms
More Steps

Evaluate
24x2−60x2
Collect like terms by calculating the sum or difference of their coefficients
(24−60)x2
Subtract the numbers
−36x2
−36x2−38x+95x
Add the terms
More Steps

Evaluate
−38x+95x
Collect like terms by calculating the sum or difference of their coefficients
(−38+95)x
Add the numbers
57x
−36x2+57x
−36x2+57x−50=0
Multiply both sides
36x2−57x+50=0
Substitute a=36,b=−57 and c=50 into the quadratic formula x=2a−b±b2−4ac
x=2×3657±(−57)2−4×36×50
Simplify the expression
x=7257±(−57)2−4×36×50
Simplify the expression
More Steps

Evaluate
(−57)2−4×36×50
Multiply the terms
More Steps

Multiply the terms
4×36×50
Multiply the terms
144×50
Multiply the numbers
7200
(−57)2−7200
Rewrite the expression
572−7200
Evaluate the power
3249−7200
Subtract the numbers
−3951
x=7257±−3951
Simplify the radical expression
More Steps

Evaluate
−3951
Evaluate the power
3951×−1
Evaluate the power
3951×i
Evaluate the power
More Steps

Evaluate
3951
Write the expression as a product where the root of one of the factors can be evaluated
9×439
Write the number in exponential form with the base of 3
32×439
The root of a product is equal to the product of the roots of each factor
32×439
Reduce the index of the radical and exponent with 2
3439
3439×i
x=7257±3439×i
Separate the equation into 2 possible cases
x=7257+3439×ix=7257−3439×i
Simplify the expression
More Steps

Evaluate
x=7257+3439×i
Divide the terms
More Steps

Evaluate
7257+3439×i
Rewrite the expression
723(19+439×i)
Cancel out the common factor 3
2419+439×i
Simplify
2419+24439i
x=2419+24439i
x=2419+24439ix=7257−3439×i
Simplify the expression
More Steps

Evaluate
x=7257−3439×i
Divide the terms
More Steps

Evaluate
7257−3439×i
Rewrite the expression
723(19−439×i)
Cancel out the common factor 3
2419−439×i
Simplify
2419−24439i
x=2419−24439i
x=2419+24439ix=2419−24439i
Solution
x1=2419−24439i,x2=2419+24439i
Alternative Form
x1≈0.7916˙−0.873014i,x2≈0.7916˙+0.873014i
Show Solution
